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Abstract

Heterogeneous and Dynamic Network Modeling and Statistical

Inference with Provable Guarantees

Akhil Jalan, PhD
The University of Texas at Austin, 2025

SUPERVISOR: Purnamrita Sarkar

Networks, or graphs, are fundamental objects used to model a huge range of phenomena

such as social interactions, biological processes, and the global economy. Due to this broad

applicability, both the development of network models and statistical inference problems

related to networks are major areas of research. In this thesis, we propose new models of

networks both capture real-world phenomena and enable learning algorithms with provable

guarantees.

First, we introduce new models of distributional shifts for network models, and give

transfer learning methods to estimate a target network with limited and noisy data. For

latent variable networks (Chapter 2), which generalize common network models such as

Stochastic Block Models and Graphons, we give a transfer learning algorithm for combinatorial

distributional shifts. In this setup, we observe an o(1) fraction of the target data for a graph

Q, as well as side information in the form of a source graph P . We give an efficient algorithm

to estimate Q that achieves vanishing error with high probability. Moreover, we give minimax

lower bounds for the special case of Stochastic Block Models, and give an efficient algorithm

to achieve the minimax rate in this setting. Furthermore, we validate our results on real-world

transfer learning problems in cell biology and dynamic social networks.

Next, we study transfer learning for matrix completion, which generalizes the problem

of network estimation with missing data (Chapter 3). We consider low-rank source matrix P

and target matrix Q which are related via a linear shift in their row and column singular

subspaces, which is a commonly studied geometric model of distributional shift. The target
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matrix Q is noisily observed in a Missing Not-at-Random (MNAR) setting that is motivated by

biological problems; entire rows and columns missing, making estimation impossible without

side information. Unlike our work on latent variable models in Chapter 2, we consider both

the active and passive sampling of rows and columns. We establish minimax lower bounds

for entrywise estimation error in each setting. Further, we give a computationally efficient

estimation framework to achieve the lower bound for the active setting, which leverages the

source data to query the most informative rows and columns of Q. This avoids the need for

incoherence assumptions required for rate optimality in the passive sampling setting. We

demonstrate the effectiveness of our approach through comparisons with existing algorithms

on real-world biological datasets.

Second, we study various network models for heterogeneous and dynamic real-world

settings in economics and sociology. We first propose a network model of bilateral contracts

between heterogeneous, mean-variance optimizing agents (Chapter 4). Our model applies to

several important classes of economic networks, such as the multi-trillion dollar market of

derivatives contracts between large financial institutions. We give an efficient algorithm for

honest agents to find a stable network from iterative pairwise negotiations, and prove that it

converges to a strong (coalitional) Nash equilibrium. This algorithm is decentralized, and

only requires that agents communicate with their neighbors in order to myopically update

their preferred contract sizes based on their own utility functions. Moreover, we give a

learning algorithm that recovers network parameters from time-series data using Semidefinite

Programming. Further, we empirically demonstrate how an external observer can learn the

source of a network shock based on observing the equilibrium before and after the shock. We

verify our findings with experiments on real-world international trade networks, and networks

constructed from real-world portfolio data.

Next, we study a model of strategic negotiations in which agents can manipulate

the pairwise negotiation algorithm of Chapter 4 by misrepresenting their true preferences

(Chapter 5). By negotiating strategically, agents can obtain better contracts. Unlike prior

works on strategic behavior in network games, which consider honest behavior or a single

strategic agent, we allow any subset of agents to be strategic. We provide an efficient algorithm

for finding the set of Nash equilibria of the game played by the strategic agents, if any exist,

and certify their nonexistence otherwise. We also show that when several strategic agents
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are present, their utilities can increase or decrease compared to when they are all honest.

Small changes in the inter-agent correlations can cause such shifts. Finally, we develop an

algorithm by which new agents can learn the information needed for strategic behavior. Our

algorithm works even when the (unknown) strategic agents deviate from the Nash-optimal

strategies. We verify these results on both simulated networks and a real-world dataset on

international trade.

Finally, we introduce a model of opinion formation in social networks where strategic

agents can manipulate publicly expressed opinions to further their own narratives (Chapter 6).

This captures real-world manipulation of social networks, such as during the 2016 US elections

and the 2019 Hong Kong protests. As in Chapter 5, we go beyond prior works by considering

multiple strategic actors, who can have conflicting goals. Unlike Chapter 5, our focus is not

on the formation of a network of contracts, but rather on the equilibrium opinions expressed

in an exogenous social network, such as Twitter. We characterize the Nash Equilibrium of the

resulting meta-game played by the strategic actors. Experiments on real-world social network

datasets from Twitter, Reddit, and Political Blogs show that strategic agents can significantly

increase polarization and disagreement, as well as increase the “cost” of the equilibrium. To

this end, we give worst-case upper bounds on the Price of Misreporting (analogous to the

Price of Anarchy). Finally, we give efficient learning algorithms for the platform to (i) detect

whether strategic manipulation has occurred, and (ii) learn who the strategic actors are. Our

algorithms are accurate on the same real-world datasets, suggesting how platforms can take

steps to mitigate the effects of strategic behavior.
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Chapter 1: Introduction

1.1 A Brief Introduction to Network Models

Networks, or graphs1, are fundamental objects in computer science, mathematics,

and statistics. Networks represent pairwise relationships within a set of entities. Given

their flexibility and simplicity, networks are ubiquitous in statistical and mathematical

modeling (Newman, 2018). Some of their applications include protein-protein interactions (Fan

et al., 2019), opinion formation in online communities (De et al., 2016), wireless networks (Page

et al., 1999), and economic supply chains (Elliott et al., 2022a).

Formally, a network is a tuple G = (V,E), where V is a finite set of vertices and

E ⊆ V × V is a set of edges. We denote the number of vertices as n = |V | and the number

of edges as m = |E|. In many settings, one has additional information regarding vertices,

edges, or both. To incorporate such information, researchers have proposed several extensions

to the basic graph model. Some prominent examples are graphons, which study a “graph

limit” as |V | → ∞ (Gao et al., 2015), dynamic graphs that evolve their edge structure over

time (Trivedi et al., 2019), and network games that model interactions of n agents with their

neighbors (Tardos, 2004).

Our work involves each of the settings listed above. Broadly speaking, we consider

network models that go beyond the basic graph model in two ways. First, we consider

heterogeneity among the nodes, meaning that different nodes in V have different feature

information which determines how they form edges. These features may or may not be known.

Second, we investigate dynamic networks that change due to new external information or

more general kinds of distributional shifts.

Within the setting of heterogeneous and dynamic network modeling, a major focus of

our work is on statistical inference with provable guarantees. Networks are widely studied

in statistics, usually within the random graph model. In this setup, there is a population

network represented as an adjacency matrix G ∈ Rn×n, and one wishes to estimate this

given some data A. The Erdos-Renyi model (Erdos et al., 1960) considers the setting where

1Throughout this thesis we will use the terms network and graph interchangeably. Statisticians seem to
prefer “network” whereas computer scientists say “graph.”
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Gij = p for some fixed p ∈ [0, 1] and all distinct i, j ∈ [n]. The data are then a random matrix

A ∈ {0, 1}n×n, where Aij iid∼ Bernoulli(p). The problem of network estimation then reduces

to estimating the single parameter p. Several generalizations of the Erdos-Renyi model are

studied, such as latent distance models, stochastic block models, random dot product graphs

and mixed membership block models (Hoff et al., 2002b; Hoff, 2007; Handcock et al., 2007;

Holland et al., 1983; Rubin-Delanchy et al., 2022; Airoldi et al., 2008). The idea for each

of these models is that all vertices have some feature information xi ∈ Rd, and then the

existence of a (possibly weighted) edge {i, j} in the population graph G is a function of xi
and xj. For example in the Stochastic Block Model (Holland et al., 1983), there is a k ≥ 2

and the feature vectors x1, . . . ,xn ∈ {0, 1}k have only a single nonzero entry each. The

nonzero entry of xi indicates the membership of node i in one of k distinct communities, and

there is a connectivity matrix B ∈ [0, 1]k×k where Bst indicates the probability of an edge

between communities s, t. Notice that the Erdos-Renyi is an SBM with k = 1.

In these random graph models, recovering the population graph G depends on the

properties of the function describing edge probabilities, as well as the noise model for

observations. For example, one might (noisily) observe only a small fraction of all edges,

rather than the n× n observation matrix A in the usual Erdos-Renyi model. Moreover, the

noise may be additive rather than Bernoulli, meaning we observe Gij + ηij for random ηij.

More recently, these distinct models have been studied under the common framework

of graph limits or graphons (Lovász, 2012; Bickel and Chen, 2009), which provide a natural

representation of vertex exchangeable graphs (Aldous, 1981; Hoover, 1979). The feature data

xi for vertices i can be considered as unseen latent variables, so graphon models are also

called latent variable models. These network models have found applications in real-world

settings such as neuroscience Ren et al. (2023), ecology Trifonova et al. (2015), international

relations Cao and Ward (2014), political pscyhology Barberá et al. (2015), and education

research Sweet et al. (2013). We defer a more detailed discussion to Chapter 2.

Across these settings in network modeling and statistical inference, we focus on two

main questions, which we discuss next.

1.2 Our Main Questions

The core questions of this work are the following.
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(Q1) How can we appropriately model real-world phenomena with networks?

We are of course motivated by real-world applications. At the same time, models

should be parsimonious and analytically tractable, and these desiderata may conflict with

applicability. As we will argue, network models should balance these considerations, with

careful attention to the specific application at hand.

Next, given the ubiquitous nature of statistical techniques in modern mathematical

modeling, we emphasize the importance of learning such models from data. This leads to our

second main question.

(Q2) How can we provably learn network models from data in a computationally efficient

way?

Our (Q2) is more technically well-defined than (Q1). By comptuational efficiency we

will use the standard notion of polynomial-time algorithms (the complexity class P) (Arora

and Barak, 2009). By “provable” we mean theoretical upper bounds on e.g. estimation error,

ideally with matching minimax lower bounds (Tsybakov, 2009). However, theoretical bounds

are not enough. Because of the need to build useful models for practitioners, we will seek

to compare the guarantees of our theory with experimental results on both simulated and

real-world data.

The advantage of simulated data is that one can carefully engineer conditions so that

theoretical assumptions are met or violated, as in an ablation study. For real-world data,

theoretical assumptions are rarely met perfectly; therefore, real-world experimental results

have the additional advantage of illustrating the extent to which theoretical assumptions fail

to match reality, as well as how much this affects the modeling outcomes.

The answer to our (Q1) depends both on what real-world phenomena are under

consideration, as well as what we mean by “appropriate.” The question of appropriateness of

models touches on fundamental issues of mathematical and statistical modeling, which we

briefly discuss here before moving to our contributions in Section 1.4.
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What makes a model appropriate? The appropriateness of a model depends on the

phenomenon being studied. In this thesis, we study network models that are both mathemat-

ical and statistical in nature. By mathematical modeling (also called mechanistic modeling),

we simply mean the use of mathematical constructs (such as functions, variables, sets) to

make statements about a real-world phenomenon (such as proteins, businesses, or social

media). For example, Maxwell’s laws are a mathematical model used to describe the activity

of magnets (Fitzpatrick, 2008). By statistical modeling we refer to the class of mathemat-

ical models that incorporate randomness in some way; for example, the use of Stochastic

Differential Equations to model stock prices (Kou, 2007).

We will demonstrate applications of our network models to areas including biology

(Chapters 2 and 3), economics (Chapters 4 and 5), and sociology (Chapter 6). Each of these

fields has its own methodological considerations. At the same time, the use of mathematical

and statistical models, and network models in particular, raises general questions that apply

to all fields.

A major conceptual issue is the role of theory versus empirics (Fang and Casadevall,

2023). Theorems are abstract statements; what can they tell us about the real world? The

straightforward answer is that theorems describe models, and to the extent that the models

match reality, the theorems do as well. Of course, common wisdom tells us that “all models

are wrong, but some are useful” (Box, 1976). We certainly agree, but in what sense are

the models wrong? How can a wrong model be useful; put differently, how wrong can the

model be before it stops being useful? Moreover, if a model is wrong, how can we know this,

except by referring to a more accurate model? These questions have been debated in applied

mathematics and physics for centuries, dating at least as far back as Newton (Newton, 1687).

Going back even further, Plato discussed the question of how mathematics might describe

physical reality in the Timaeus (circa 360 B.C.E.) (Gill, 1987).

For network models specifically, a particularly relevant issue is that of reduction-

ism (Thurner et al., 2018). Any mathematical model can be viewed as reductionist, since it

seeks to reduce a system’s behavior to a set of assumptions (axioms). For example, microeco-

nomics models might assume utility-maximizing behavior of agents (Browning and Zupan,

2020), and physics models might assume that a dynamical system is linear (Thirring, 2013).

But problems of a “complexity science” or “emergence” flavor seem to elude reductionist
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models (Thurner et al., 2018), and this motivates the use of network models to capture

emergent phenomena in fields such as biology (Kauffman, 2019), economics (Arthur, 2021),

sociology (Castellani and Hafferty, 2009).

Statistical models also raise important questions regarding interpretation and appli-

cability. It is said that a “random variable is neither random nor variable” (Hedderich and

Sachs, 2024). This aphorism is typically used to motivate the definition of random variables

as measurable functions, but a measure-theoretic perspective does not clarify matters to

the practitioner either. The practitioner wishes to know: is reality stochastic or not? This

question hinges not only on probability theory but also an exact theory of physics, which we

currently lack. The question of what randomness and probability mean has been debated

since the founding of probability theory more than 3 centuries ago (Diaconis and Skyrms,

2018). This informs not only the interpretation of statistical practice but also frequentism

versus Bayesianism in statistics, which is widely debated in its own right (Bland and Altman,

1998; Samaniego, 2010). Resolving these questions is well beyond the scope of our work,

but should be kept in mind when we consider how theoretical statements with probabilities

should be used for practical problems.

Finally, how should we think of statistical modeling in the era of deep learning? Our

work on statistical modeling with networks largely involves “traditional” statistical models,

rather then deep learning methods such as Graph Neural Networks (Wu et al., 2020; Zhu

et al., 2021). We note that some of our models can accept inputs from deep learning models

as part of a larger multi-scale framework (Weinan, 2011). For example, the source information

for the transfer learning algorithm of Chapter 3 might be an estimate from a deep learning

method. Similarly, the mean-variance beliefs of economic agents in Chapters 4, and 5 might

be the outcome of a deep learning model.

Still, we largely focus on more traditional methods. The main advantage of these

approaches is that one can provide theoretical guarantees. Furthermore, these traditional

algorithms are more interpretable than deep learning systems, which is critical for fields such

as healthcare (Vellido, 2020). However, these models might have more restrictive assumptions,

and might be less effective in general. How should practitioners navigate these chioces?

Deep learning advocates might advance the “theory free ideal,” which combines massive

datasets and massive neural networks to simply examine the results (Andrews, 2023). While
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this is tempting, it is known that deep learning has fundamental limits and cannot learn

functions of certain types (Abbe and Sandon, 2018). In fact, there are information-theoretic

limits to learning closed-form models from data for any method, based on thermodynamic

arguments (Fajardo-Fontiveros et al., 2023).

Moreover, in data-bottlenecked domains such as biology and chemistry, one cannot

build a “perpetual motion machine” that generates ever-more synthetic data to train ever-

larger models (Listgarten, 2024). While some have proposed using synthetic data from

generative models to replace real data, recent work on representation learning suggests this

may be of limited usefulnes, as “[g]enerative models can be viewed as a compressed and

organized copy of a dataset” (Jahanian et al., 2022).

We emphasize that the question of what makes an appropriate model (related to our

(Q1)) is not merely an academic concern. The choice of conceptual framework of modeling is

critical to any real-world scientific or engineering context (Fang and Casadevall, 2023). Model

choices drive real-world decisions, and in real-world controls systems the decision-maker may

be an algorithm rather than a human (de Cañete et al., 2018). Therefore, understanding the

implications of model selection and the broader context of usage is critical for researchers,

and this informs our (Q1).

1.3 Notation

For an integer r ≥ 1, we use [r] to denote the set of integers [r] := {1, 2, . . . , r}.

We use lowercase letters, with or without subscripts, to denote scalars (e.g., c, γi). Let

a∨ b := max{a, b} and a∧ b := min{a, b}. Lowercase bold letters denote vectors (µi,w), and

uppercase letters denote matrices (W,P,Σi).

For vector µ and matrix Σ we use µi to denote the ith entry of µ and Σjk to denote

the (j, k) cell of Σ. If µi refers instead to the ith member of a collection of vectors µ1, . . . ,µk

then we use µi;j to refer to the jth component of the vector µi, and similarly Σi;jk for the

(j, k) cell of matrix Σi. The absence of a semicolon in the subscript indicates the former case

always.

For multisets S, T and A ∈ Rm×n, let A[S, T ] ∈ R|S|×|T | be the submatrix with row

and column indices in S, T respectively, possibly with repeated entries from A if S, T have

20



repeated elements.

We use vT to denote the transpose of a vector v, and ‖ · ‖p to denote the `p norm of a

vector or matrix. For vectors x,y we use 〈x,y〉 to denote the standard inner product (the

dot product). Let ⊗ denote the tensor (Kronecker) product: for A ∈ Rm×n, B ∈ Rs×t, we

have (A⊗ B) ∈ Rms×nt with (A⊗ B)i(r−1)+v,j(s−1)+w = AijBvw. Furthermore, for a matrix

A we denote the Frobenius norm as ‖A‖F , max norm as ‖A‖max := maxi,j|Aij|, and 2→∞
norm as ‖A‖2→∞ := maxi ‖ATei‖2 = sup

‖x‖2=1

‖Ax‖∞.

We say the matrix A � 0 if A is positive semidefinite, A � 0 if it is positive definite,

and A � B if A−B � 0. The vectors e1, . . . , en denote the standard basis in Rn, and In is

the n×n identity matrix. For integer n, d such that d ≤ n, the Stiefel manifold On×d Hatcher

(2002) consists of all U ∈ Rn×d such that UTU = Id.

For an appropriate matrix M , tr(M) calculates its trace, vec(M) vectorizes M by

stacking its columns into a single vector, and uvec(M) vectorizes the upper-triangular off-

diagonal entries of M .

For functions f, g : N→ R we let f . g denote f = O(g) and f & g denote f = Ω(g).

1.4 Overview of Our Contributions

This thesis is organized into separate chapters, and can be read in roughly two parts.

First, we study transfer learning for latent variable network models (Chapter 2) and for matrix

completion (Chapter 3). These chapters mainly concern statistical modeling (our (Q2)),

and specifically on statistical inference with provable guarantees in the face of heterogeneous

data. The heterogeneity can come from a distribution shift, or from dynamics (changes in

time). The applications are mainly focused on biological problems, although we also give

applications to dynamic social networks in Chapter 2. While the theoretical results in these

chapters are general, we will also discuss the appropriateness of our modeling frameworks for

each application as well (our (Q1)).

Second, we study specific network models for financial networks (Chapter 4), strategic

negotiations during network formation games (Chapter 5), and manipulation of social networks

(Chapter 6). These chapters concern both mathematical and statistical modeling (our

(Q1) and (Q2)). The specificity of the application domains will allow us to examine the
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appropriateness of our network models in depth (our (Q1)).

We now give an overview of each chapter. For each work, the dissertator was the first

author, and was responsible for discussing, deriving and writing up the detailed theoretical

analysis, conducting and discussing the experiments, and writing and revising the paper.

1.4.1 Transfer Learning for Latent Variable Network Models2

In machine learning and statistics, transfer learning is a paradigm in which data from

a source distribution P is exploited to improve estimation of a target distribution Q for

which a small amount of data is available. Transfer learning is well-studied in learning theory,

starting with works such as Ben-David et al. (2006); Cortes et al. (2008); Crammer et al.

(2008), and at the same time has found applications in areas such as computer vision Tzeng

et al. (2017b) and speech recognition Huang et al. (2013). A fairly large body of work in

transfer learning considers different types of relations that may exist between P and Q,

for example, Mansour et al. (2009); Hanneke and Kpotufe (2019, 2022), with emphasis on

model selection, multitask learning and domain adaptation. On the other hand, optimal

nonparametric rates for transfer learning have very recently been studied, both for regression

and classification problems Cai and Wei (2021a); Cai and Pu (2024).

In Chapter 2, we study transfer learning in the context of random network/graph

models. In our setting, we observe Bernoulli samples from the full n × n edge probability

matrix for the source P and only a nQ × nQ submatrix of Q for nQ � n. We would like to

estimate the full n×n probability matrix Q, using the full source data and limited target data,

i.e., we are interested in the task of estimating Q in the partially observed target network,

utilizing information from the fully observed source network. This is a natural extension of

the transfer learning problem in classification/regression to a network context. Moreover,

the particular formulation of observing only a vertex-induced subgraph of Q is motivated by

practical settings, such as biological network estimation (Figure 1.1). However, it is to be

noted that network transfer is a genuinely different problem owing to the presence of edge

correlations.

To study transfer learning on networks, one needs to fix a general enough class of

2This work appeared in Advances in Neural Information Processing Systems (NeurIPS) 2024 and can be
cited as Jalan et al. (2024b).
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Figure 1.1: In metabolic networks, nodes are metabolites (such as amino acids), and edges
are between metabolites that occur in the same reaction. In vivo methods for testing edges in
metabolic networks require metabolite balancing and labeling experiments, so only the edges
whose endpoints are both incident to the experimentally chosen metabolites are observed
Christensen and Nielsen (2000). Therefore, for a model organism (left) we may see edges
incident to all n metabolites, but for non-model organisms (right) we may only see edges
incident to the center nQ � n metabolites.

networks that is appropriate for the applications (such as the biological networks mentioned

above) and also suitable to capture the transfer phenomenon. We study latent variable

models, which generalize many classes of networks in the statistics literature such as latent

distance models, stochastic block models, random dot product graphs, and graphons Hoff

et al. (2002b); Hoff (2007); Handcock et al. (2007); Holland et al. (1983); Rubin-Delanchy et al.

(2022); Airoldi et al. (2008); Lovász (2012). For unseen latent variables x1, . . . ,xn ∈ X ⊂ Rd

and unknown function fQ : X× X→ [0, 1] where X is a compact set and d an arbitrary fixed

dimension, the edge probabilities are Qij = fQ(xi,xj).

The transfer learning problem is to to estimate the population matrix Q, given

observations AQ;ij ∼ Bernoulli(Qij), as well as observations AP ;st ∼ Bernoulli(Pst) for a

source matrix P . The source data AQ are missing in all but an S × S submatrix, for a small

S ⊂ [n] that is sampled from all nQ-sized subsets uniformly at random. The goal is to output

a Q̂ ∈ Rn×n which minimizes the squared error ‖Q̂−Q‖2
F .

To enable transfer learning, one must assume some relationship between the source and

target data. One natural assumption is to consider pairs (fP , fQ) such that for all x,y ∈ X,

the difference (fP (x,y)− fQ(x,y)) is small. For example, Cai and Pu (2024) study transfer

learning for nonparametric regression when fP − fQ is close to a polynomial in x,y. But,
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requiring fP − fQ to be pointwise small does not capture a broad class of pairs in the network

setting. For example, if fP = αfQ. Then fP − fQ = (α− 1)fQ can be far from all polynomials

if fQ is, e.g. a Hölder -smooth graphon.3 However, under the network model, this means AP
and AQ are stochastically identical modulo one being α times denser than the other.

We will therefore consider pairs (fP , fQ) that are close in some measure of local graph

structure. In particular, we use a graph distance measure introduced in Mao et al. (2021)

for a different inference problem. Informally, in graph P the distance between nodes i and j

measures the similarity of the 2-hop neighborhoods of i, j.

We will require that fP , fQ satisfy a local similarity condition on the relative rankings

of nodes with respect to this graph distance. Since we only estimate the probability matrix

of Q, the condition is on the latent variables x1, . . . ,xn of interest. The hope is that the

proximity in graph distance reflects the proximity in latent positions.

With this relationship between the source and target, the main contributions of

Chapter 2 are as follows.

Algorithm for Latent Variable Models. We provide an efficient algorithm for

latent variable models with Hölder-smooth fP , fQ. The benefit of this algorithm is that it

does not assume a parametric form of fP and fQ. We prove a guarantee on its error in terms

of the dimension d, the dataset sizes nQ, n, and the smoothness levels of fP , fQ.

Minimax Rates. We prove a minimax lower bound for Stochastic Block Models

(SBMs). Moreover, we provide a simple Algorithm that attains the minimax rate for this

class.

Experimental Results on Real-World Data. We test both of our algorithms

on real-world metabolic networks and dynamic email networks, as well as synthetic data

from well-studied classes of networks such as latent distance models and mixed-membership

stochastic block models.

3In fact, Cai and Pu (2024) highlight this exact setting as a direction for future work.
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1.4.2 Optimal Transfer Learning for Missing Not-at-Random Matrix Comple-
tion4

In Chapter 3, we study a natural generalization of the network estimation problem

via matrix completion. A weighted graph can be viewed as an adjaceny matrix Q ∈ Rn×n.

Therefore in the transfer learning setting of Chapter 2, we can view estimation of the

target matrix Q given only a subset of the edges as a special case of matrix completion,

when the population matrix is a latent variable network model. Matrix completion, in

addition to generalizing network estimation, is a fundamental problem in its own right,

and is well-motivated by theory Candès and Recht (2009); Candès and Tao (2010) and

practice Fernández-Val et al. (2021); Einav and Cleary (2022); Gao et al. (2022).

Classically, matrix completion is studied in the Missing Completely-at-Random

(MCAR) setting Jain et al. (2013); Chatterjee (2015a); Chen et al. (2020b), where each

entry of Q is observed i.i.d. with probability p (possibly with additional noise). However,

the MCAR assumption may not necessarily hold in practice, which motivates more general

missingness patterns called Missing-Not-at-Random (MNAR). Instead of a single parameter

p, MNAR works often consider an underlying propensity matrix pij so that each Q̃ij is ob-

served independently with probabilty pij Ma and Chen (2019); Bhattacharya and Chatterjee

(2022). Various MNAR models have been formulated based on missigness structures in panel

data Agarwal et al. (2023b), recommender systems Jedra et al. (2023), and electronic health

records Zhou et al. (2023).

Motivated by biological problems, in Chapter 3 we consider a challenging MNAR

structure where most rows and columns of Q̃ (a noisy version of Q) are entirely missing. This

is similar to the missigness model for network estimation we studied in Chapter 2, but has

important differences as well.

In particular, we consider both the active sampling and passive sampling settings for

Q̃, whereas Chapter 2 only considers the passive sampling setting. In active sampling, a

practitioner can choose rows R and columns C so that entries in R× C are observed. This

follows experimental design constraints in metabolite balancing experiments Christensen

and Nielsen (2000), marker selection for single-cell RNA sequencing Vargo and Gilbert

4This work is under review at the 42nd International Conference on Machine Learning (ICML 2025), and
can be cited as Jalan et al. (2025).
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Figure 1.2: The missingness matrix for gene expression levels on Day 2 of a sepsis study Parnell
et al. (2013) shows entire rows (patients) and columns (genes) as missing, due to e.g. probe-
target hybridization failure of the Illumina HT-12 gene expression microarray Hu et al. (2021).
We mark missing entries as 0 (white) and present entries as 1 (blue). This motivates our
missingness model in Chapter 3.

(2020), patient selection for companion diagnostics Huber et al. (2022), and gene expression

microarrays Hu et al. (2021).

In the passive sampling setting, the practitioner cannot choose the experiments. We

model this by sampling each row (column) with probability pRow (pCol). This passive sampling

setup captures observation patterns in settings such as gene microarrays. For an illustration,

see Figure 1.2. Note that in Chapter 2, we instead consider a passive sampling setup in which

a set of nodes S ⊂ [n] is chosen uniformly at random from all subsets of size |S|.

In both the active and passive sampling settings, estimation of Q is impossible without

additional information. Hence, we consider transfer learning in a setting where one has a noisy

and masked P̃ corresponding to a source matrix P . P and Q are related by a distribution shift

in their latent singular subspaces (see Chapter 3 for precise definitions), which is a common

model in e.g. Genome-Wide Association Studies McGrath et al. (2024) and Electronic Health

Records Zhou et al. (2023). This model of distribution shift is a geometric one, as opposed to

the combinatorial distribution shift model of Chapter 2.
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The main contributions of Chapter 3 are as follows.

Minimax lower bounds. We obtain minimax lower bounds for entrywise estimation error

for both the active and passive sampling settings.

Computationally efficient estimation framework and upper bounds. We give a

computationally efficient estimation framework for both sampling settings. Our procedure is

minimax optimal for the active setting. We also establish minimax optimality for the passive

setting under incoherence assumptions.

Real world experiments. We compare the performance of our algorithm with existing

algorithms on real-world datasets for gene expression microarrays and metabolic modeling.

1.4.3 Dynamic, Incentive-Aware Models of Financial Networks5

After the financial crisis of 2008, a major body of work in economics and related fields

found that the financial collapse was in part due to the network structure of the financial

system Elliott et al. (2014); Glasserman and Young (2015, 2016); Birge (2021); Jackson

and Pernoud (2021). The network of interconnections between firms (through e.g. debt

obligations) caused problems at one firm spread to others. If one firm defaulted on its debt,

its creditors suffered losses. Some creditors would then be forced into default, triggering

a default cascade Eisenberg and Noe (2001). Besides the network of debt obligations, an

important financial network is the implicit network between firms holding similar assets. Sales

by one firm can cause the valuations of neighboring firms to decline. These can snowball into

fire sales and rapid, correlated declines in overall market valuations Caballero and Simsek

(2013); Cont and Minca (2016); Feinstein (2020); Feinstein and Søjmark (2021).

This motivates the study of financial networks, and in particular the development

of models which capture systemic risk. For example, network density, diversification, and

inter-firm cross-holdings can affect how robust the networks are to shocks and how such shocks

propagate Elliott et al. (2014); Acemoglu et al. (2015); Eisfeldt et al. (2023). The network

5This work appeared in Operations Research 2024, and can be cited as Jalan et al. (2024a).
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structure also affects the design of regulatory interventions Papachristou and Kleinberg (2022);

Amini et al. (2015); Calafiore et al. (2022); Galeotti et al. (2020).

In Chapter 4, we propose a model of financial networks in which agents (firms) optimize

mean-variance utility by forming contracts with their neighbors. Unlike previous works, our

model does not assume that the network is fixed and observable, but rather models the

network formation process and assumes that agents only know their own edges. Moreover,

we make no assumptions about the network topology, unlike previous works that assume

a ring Caballero and Simsek (2013) or core-periphery Amini et al. (2015) topology. This

is important since real-world financial networks exhibit complex structure depending on

inter-agent heterogeneity and other factors Peltonen et al. (2014); Glasserman and Young

(2016); Eisfeldt et al. (2023).

In our model, there is a set of n agents, and an underlying undirected graph given by

some E ⊆ V × V . A pair (i, j) are allowed to form a contract iff {i, j} ∈ E. Agent i forms

a vector of contracts wi ∈ Rn, where wi;j is the size of their contract with j. Notice that

wi;j < 0 is allowed and corresponds to swapping the roles of two parties in a contract (e.g.

the role of lender & borrower). Further, wi;j is nonzero iff {i, j} ∈ E.

Agent i has private beliefs (µi, γi,Σi) ∈ Rn × R × Rn×n regarding the returns of a

vector of contracts, where µi;j is the expected reward of a unit-sized contract with j, Σi;jk

is the covariance of contracts that i might form with j and k, and γi > 0 is a risk-aversion

parameter. Then their utility is:

agent i’s utility gi(wi) := wT
i µi − γi ·wT

i Σiwi, (1.1)

We assume Σi � 0, so Eq. (1.1) has a unique optimum. However, agents i, j may disagree

about the preferred size of a contract between them. If agent j wants a larger contract, they

can pay agent i a price Pij > 0 per unit contract. The overall network is then a pair (W,P )

depending on the private preferences (µi, γi,Σi)i∈[n] and the underlying set of allowed edges

E. Here Wij = Wji is the size of the contract, and Pij ·Wij is the payment that j makes to i.

Figure 1.3 gives an illustration for n = 2.

With the model defined as above, the main contributions of Chapter 4 are as follows.

Stable Networks and Strong Nash Equilibria. When n = 2, it is clear that the

two parties can agree to a contract size through payment (Figure 4.1). However, for n > 2 it
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Figure 1.3: Example of a stable point for a borrower (Firm 1) and a lender (Firm 2): (a)
When the borrower cannot pay the lender an additional payment, the firms may be unable
to agree to a contract, even if trading improves their utilities. (b) By allowing for contract-
specific payments, both firms can agree on a contract size. In effect, the borrower (Firm 2)
shares its utility with the lender (Firm 1) to achieve agreement. (c) The stable network is
shown.

is not clear that all parties can agree to a set of contracts. The reason is that the network

structure introduces dependencies between non-neighboring agents. So that Alice’s contract

with Bob depends not just on their preferences, but also the contracts that Bob forms with

his neighbors, and so on.

Without higher-level coordination, is it possible for all agents to form contracts that

are optimal for each person? We call such a network of contracts stable, and show that

indeed agents can find it with an efficient algorithm that only involves negotiations with

one’s neighbors.

Moreover, the stable point is Higher-Order Nash Stable: for any cartel S ⊂ [n] and

deviation (W ′, P ′), there exists some cartel member i ∈ S who is not better off at (W ′, P ′).

This is a strengthening of solution concepts such as Nash equilibria and pairwise-stable Nash

equilibria Sadler and Golub (2021).

Learning from time-series network data. Learning the parameters of real-world

financial networks is an important problem for government regulators Arora et al. (2021).

In our model, we consider how an external observer might learn agent preferences from

time-series data consisting of stable networks (Wt)t=1,2,...,T . Under the assumption that

the (µi)i∈[n] evolve according to a Brownian motion, and that agents share the same risk
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assessment Σ (e.g. from a credit ratings agency Lopatta et al. (2019)), we give prove that a

Semidefinite Programming algorithm can recover the risk asssessment matrix Σ.

Identifying the source of a network shock. Suppose that the change from Wt

to Wt+1 is due to a single changed preference, e.g. an update for µi;j . If all other preferences

are unchanged, we say that the update to µi;j is a shock. Identifying the sources of shocks is

important both for government regulators and agents who might wish to update their own

mean/covariance beliefs regarding i, j. However, we show empirically that in realistic settings,

the indirect effects (changes not affect i or j) can be as significant as the direct effects. In

such cases, a regulator cannot infer the underlying cause of changes in the network.

Outlier detection by agents. A firm i can observe its contracts with neighbors

but not the entire network. Suppose another firm j (say, a real-estate firm) has beliefs that

are very different from its peers. Then, we prove that under certain conditions, j’s contract

size with i is also an outlier compared to other real-estate firms. So, firm i can use the

network to detect outliers and update its beliefs. But suppose all real-estate firms change

their beliefs. This changes all their contract sizes without creating outliers. We show that

i cannot determine the cause of this change. For example, firm i would observe the same

change whether all real-estate firms had become more risk-seeking or profitable. Since the

data cannot distinguish between these two scenarios, firm i remains uncertain about what to

do.

1.4.4 Strategic Negotiations in Endogenous Network Formation6

The network formation process of Chapter 4 can be viewed as a special case of a

network formation game. In statistics and machine learning, as well as economics and

computing, there has been increasing interest in network games, which describe n-player

games in which each agent plays a game with each of their neighbors on a network (Leng

et al., 2020a; Rossi et al., 2022; Wang and Kleinberg, 2024; Park et al., 2024). Besides the

pairwise negotations used to form the contract network of Chapter 4, other examples of

network games include opinion spreading in a social network De et al. (2016); Gaitonde et al.

(2020b); Chen and Rácz (2021b) or firm-level investment choices in a competitive market

6This work is under review at the 26th ACM Conference on Economics and Computation (ACM EC
2025), and can be cited as Jalan and Chakrabarti (2024).
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Sadler and Golub (2021).

In such network games, an agent may wish to strategically mislead or manipulate their

neighbors to obtain a better payoff. In Chapter 5, we consider how agents might mislead

their neighbors in the model of Chapter 4 to achieve better utility at the resulting stable

point. We call agents who mislead their neighbors strategic, and propose a model in which

any subset of agents can be strategic.

Prior works on such network games only consider a single strategic node or external

actor Gaitonde et al. (2020b); Galeotti et al. (2020); Chen and Rácz (2021b). Interactions

between several strategic agents are not explored. Also, in these models, the network is

pre-specified (exogenous), whereas we study strategic behavior during the network formation

process. Within network formation games, researchers largely assume that all agents report

their actual preferences Acemoglu and Azar (2020); Sadler and Golub (2021); Wang and

Kleinberg (2024). In our work on contract formation, we also assumed that agents negotiate

honestly during pairwise negotations (Chapter 4). Hence, prior works do not consider strategic

interactions between agents.

In Chapter 5, we present, to our knowledge, the first results for a multi-agent network

formation game with an arbitrary set of strategic agents. Our model can be viewed as a

meta-game with respect to the (honest) pairwise negotiations of Chapter 4. Fix a set S ⊂ [n]

of strategic agents. In the meta-game, each strategic agent i ∈ S chooses some µ′i ∈ Rn

different from their true preference µi. We call µ′i the negotiating position. Non-strategic

j 6∈ S have honest negotiating positions µ′j = µj.

Once the negotiating positions are chosen, the stable network (Wstrategic, Pstrategic) is

chosen as if all agents negotiated honestly (e.g. through the first Algorithm of Chapter 4).

The goal of each strategic i ∈ S in the meta-game is to choose negotiating positions µ′i so

that their mean-variance utility at this stable point is maximized.

Within this model, the main contributions of Chapter 5 are as follows.

Finding the optimal negotiating position of each agent in the network. At

first sight, it is not obvious that an optimal position exists, especially when there are several

strategic agents. For instance, consider two hedge funds competing against each other to

trade with an investor. It may seem that the two funds would be locked in an arms race,

31



leading to unbounded negotiating positions. Furthermore, each fund must pick its position

before seeing the other fund’s choice. This uncertainty makes the problem even more difficult.

Nevertheless, we show that if agents know the preferences of all network members, they

can find optimal negotiating positions. We prove that there exists an efficient algorithm to

find the set of optimal negotiating positions an arbitrary set S ⊆ [n] of strategic agents, or

report when no optimal solution exists. Note that “optimal” is with respect to the choices of

other agents as well; in particular, the negotiating positions found by our algorithm are Nash

equilibria.

Learning algorithm for agents. The algorithm for strategic negotiations requires

that each strategic agent knows the true preferences (µi)i∈[n]. How can an agent learn these

preferences? They may observe the network from previous timesteps, but they cannot directly

infer other agents’ beliefs since the network was formed from strategic negotiations. Moreover,

agents perceive correlations between their contracts and want to minimize their risk. Hence,

agent i’s contract with j can depend on j’s contract with k, which depends on k’s contract

with `, and so on. So, an edge between (i, j) can depend on the beliefs of all agents (including

the strategic ones), not just i and j.

We given algorithm that we present an algorithm to learns the other agents’ true

beliefs and the set of strategic agents from a single observation of a stable network W . Our

algorithm is robust to strategic agents playing non-Nash-optimal strategies to fool the learner.

Deviations from Nash equilibria are known to be strategic in certain games against learning

agents Assos et al. (2024).

Experiments on simulated and real-world data. We simulate Nash-optimal

strategic negotiations on real-world international trade data OECD (2022). Our experiments

confirm that the utilities of agents are sensitive to the set of strategic agents. We also show

that our learning algorithm recovers the parameters needed for strategic negotiations for a

broad range of networks.
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1.4.5 Opinion Dynamics with Multiple Adversaries7

In the past two decades, social media has grown rapidly. Online social networks,

which allow users to share updates about their lives and opinions with a broad audience

instantaneously, are now utilized by billions of people globally. These platforms crucially

serve as a medium of information exchange, for topics including politics, news, health-related

updates, consumer products, and many more (Backstrom et al., 2012; Young, 2006; Banerjee

et al., 2013; Shearer and Mitchell, 2021).

In sociology, the filter-bubble theory (Pariser, 2011) argues that personalized algorithms

used by online platforms, such as search engines and social media,selectively display content

that aligns with a user’s past behaviors, preferences, and beliefs. Therefore social networks

can incude polarization and social discord (Musco et al., 2018b; Chen and Rácz, 2021b; Wang

and Kleinberg, 2024; Gaitonde et al., 2020a). This has major real-world consequences, as

malicious entities can exploit social networks in order to create discord and cause disagreement.

This has already occurred in the 2016 U.S. presidential election (Mueller, 2018), and the

2019 Hong Kong Protests (Twitter, Inc., 2019). These manipulation efforts are sometimes

coordinated; however, malicious actors have also sought to target users in conflicting ways,

such as when Facebook pages have targeted Americans with sports betting scams and

conspiracy theories (Bjork-James and Donovan, 2024).

To model the evolution of opinions in social networks, computer scientists, sociologists,

and statisticians have relied on the framework of opinion dynamics, where the users’ opinions

coevolve according to a weighted network G = (V,E,w). Each user updates their opinion as

a combination of their own intrinsic opinion as well as the opinions of their neighbors (Fried-

kin and Johnsen, 1990), capturing the effect of social pressure on opinion formation and

expression. This is called the Friedkin-Johnson (FJ) model. So far, all of the existing works

on manipulation of opinion dynamics consider a single actor who has the ability to act on

the network to induce disagreement or polarization (Musco et al., 2018b; Chen and Rácz,

2021b; Wang and Kleinberg, 2024; Ristache et al., 2024; Gaitonde et al., 2020a; Rácz and

Rigobon, 2023; Chitra and Musco, 2020).

7This work is under review at the 26th ACM Conference on Economics and Computation (ACM EC
2025), and can be cited as Jalan and Papachristou (2025).
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|S| = 1 |S| = 4

Figure 1.4: Visualization of the strategically manipulated equilibrium on the Karate Club
Graph for two different choices of S (the set of strategic agents). White nodes correspond
to the nodes in S. For the other nodes, the nodes colored in blue (resp. red) correspond
to nodes whose R-valued public opinion increased (resp. decreased), as a result of strategic
behavior.

In Chapter 6, we lift the assumption that only a single actor manipulates the network,

and consider the case of several decentralized actors. This is motivated by real-world social

networks, which involve multiple malicious actors, who use different levels of manipulation

and hate speech based on their individual goals (Bjork-James and Donovan, 2024). In our

setting, we assume that there is a set S ⊆ V of strategic agents whose goal is to report false

intrinsic opinions that are different from their true intrinsic opinions.

This strategic misreporting can be viewed as a meta-game played by the members of

S, where the base game is the ordinary Friedkin-Johnson opinion dynamics model. The goal

of strategic agents in S is to influence others while not deviating much from their neighbors;

namely, they want to reach an equilibrium where their neighbors agree with them. Such

adversarial behavior can result in significantly different (cf. Figure 1.4) and highly polarized

equilibria, where the strategic agents’ opinions appear dominant despite not reflecting the

actual intrinsic views of the majority.

Our work investigates the conditions under which these strategic manipulations are

successful, the extent of their impact on network-wide opinion dynamics, and how platforms

can learn from observing these manipulated equilibria to mitigate such impacts. Our main

contributions are as follows.
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Characterizing Nash Equilibria with Multiple Adversaries. We give the Nash equi-

librium of the meta-game defined by strategic misreporting, and show that all Nash-optimal

strategies are pure. The Pure Strategy Nash Equilibrium (PSNE) that is given by solving a

constrained linear system. Given the PSNE of the game, we characterize the actors who can

have the most influence in strategically manipulating the network.

Real-World Experiments to Understand Properites of Equilibria. We apply our

framework to real-world social network data from Twitter and Reddit (Chitra and Musco,

2020), and data from the Political Blogs (Polblogs) dataset (Adamic and Glance, 2005). We

find that the influence of strategic agents can be rather significant as they can significantly

increase polarization and disagreement, as well as increase the overall “cost” of the consensus.

Analysis of Equilibrium Outcomes Under Different Sets of Strategic Actors. Var-

ious metrics for network polarization and disagreement are sensitive to the choice of who acts

strategically, in nontrivial ways. For example, adding more strategic agents can sometimes de-

crease the Disagreement Ratio at equilibrium, due to counterbalancing effects. To address the

effects of manipulation, we give worst-case upper bounds on the Price of Misreporting (PoM),

which is analogous to well-studied Price of Anarchy bounds (see, for example, Bhawalkar

et al. (2013); Roughgarden and Schoppmann (2011)), and suggest ways that the platform

can be used to mitigate the effect of strategic behavior on their network.

Learning Algorithms for the Platform. We give an efficient algorithm for the platform

to detect if manipulation has occurred, based on a hypothesis test with the publicly reported

opinions. Next, we give an algorithm to infer who manipulated the network (the set of

strategic agents S), based on observing the publicly observed equilibrium opinions at a

previous timestep. As in Chapter 5, this latter algorithm relies on robust regression to

correct for the corruption of the data due to strategic behavior. Our algorithm is practical,

requiring node embeddings which are computable even in billion-scale networks such as

Twitter (El-Kishky et al., 2022), and runs in polynomial time. Our algorithms have high

accuracy on real-world datasets from Twitter, Reddit, and Polblogs.
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Chapter 2: Transfer Learning for Latent Variable
Network Models

2.1 Introduction

Within machine learning and statistics, the paradigm of transfer learning describes

a setup where data from a source distribution P is exploited to improve estimation of a

target distribution Q for which a small amount of data is available. Transfer learning is quite

well-studied in learning theory, starting with works such as Ben-David et al. (2006); Cortes

et al. (2008); Crammer et al. (2008), and at the same time has found applications in areas

such as computer vision (Tzeng et al., 2017b) and speech recognition (Huang et al., 2013). A

fairly large body of work in transfer learning considers different types of relations that may

exist between P and Q, for example, Mansour et al. (2009); Hanneke and Kpotufe (2019,

2022), with emphasis on model selection, multitask learning and domain adaptation. On the

other hand, optimal nonparametric rates for transfer learning have very recently been studied,

both for regression and classification problems (Cai and Wei, 2021a; Cai and Pu, 2024).

In this paper, we study transfer learning in the context of random network/graph

models. In our setting, we observe Bernoulli samples from the full n × n edge probability

matrix for the source P and only a nQ × nQ submatrix of Q for nQ � n. We would like to

estimate the full n×n probability matrix Q, using the full source data and limited target data,

i.e., we are interested in the task of estimating Q in the partially observed target network,

utilizing information from the fully observed source network. This is a natural extension of

the transfer learning problem in classification/regression to a network context. However, it is

to be noted that network transfer is a genuinely different problem owing to the presence of

edge correlations.

While transfer learning in graphs seems to be a fundamental enough problem to

warrant attention by itself, we are also motivated by potential applications. For example,

metabolic networks model the chemical interactions related to the release and utilization

of energy within an organism (Christensen and Nielsen, 2000). Existing algorithms for

The content of this chapter appeared in Advances in Neural Information Processing Systems (NeurIPS)
2024 and can be cited as Jalan et al. (2024b).
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metabolic network estimation (Sen et al., 2018; Baranwal et al., 2020) and biological network

estimation more broadly (Fan et al., 2019; Li et al., 2022) typically assume that some edges

are observed for every node in the target network. One exception is Kshirsagar et al. (2013),

who leverage side information for host-pathogen protein interaction networks. For the case

of metabolic networks, determining interactions in vivo1 requires metabolite balancing and

labeling experiments, so only the edges whose endpoints are both incident to the experimentally

chosen metabolites are observed (Christensen and Nielsen, 2000). For a non-model organism,

the experimentally tested metabolites may be a small fraction of all metabolites believed to

affect metabolism. However, data for a larger set of metabolites might be available for a

model organism.

To study transfer learning on networks, one needs to fix a general enough class of

networks that is appropriate for the applications (such as the biological networks mentioned

above) and also suitable to capture the transfer phenomenon. The latent variable models

defined below appear to be a natural candidate for that.

Latent Variable Models. Latent variable network models consist of a large class of

models whose edge probabilities are governed by the latent positions of nodes. This includes

latent distance models, stochastic block models, random dot product graphs and mixed

membership block models (Hoff et al., 2002b; Hoff, 2007; Handcock et al., 2007; Holland

et al., 1983; Rubin-Delanchy et al., 2022; Airoldi et al., 2008). They can also be unified under

graph limits or graphons (Lovász, 2012; Bickel and Chen, 2009), which provide a natural

representation of vertex exchangeable graphs (Aldous, 1981; Hoover, 1979). In addition to

their theoretical breadth and usefulness, latent variable models are relevant and applicable to

real-world settings such as neuroscience Ren et al. (2023), ecology Trifonova et al. (2015),

international relations Cao and Ward (2014), political pscyhology Barberá et al. (2015), and

education research Sweet et al. (2013).

For unseen latent variables x1, . . . ,xn ∈ X ⊂ Rd and unknown function fQ : X×X→
[0, 1] where X is a compact set and d an arbitrary fixed dimension, the edge probabilities are:

Qij = fQ(xi,xj). (2.1)

1In the organism, as opposed to in vitro (in the lab).
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Typically, in network estimation, one observes adjacency matrix {Aij} distributed as

{Bernoulli(Qij)}, and either has to learn xi or directly estimate fQ. There has been much

work in the statistics community on estimating xi for specific models (usually up to rotation).

For stochastic block models, see the excellent survey in Abbe (2017).

Estimating fQ can be done with some additional assumptions (Chatterjee, 2015b).

When fQ has appropriate smoothness properties, one can estimate it by a histogram ap-

proximation (Olhede and Wolfe, 2014; Chan and Airoldi, 2014). This setting has also been

compared to nonparametric regression with an unknown design (Gao et al., 2015). Methods

for network estimation include Universal Singular Value Thresholding (Chatterjee, 2015b; Xu,

2018), combinatorial optimization (Gao et al., 2015; Klopp et al., 2017), and neighborhood

smoothing (Zhang et al., 2017; Mukherjee and Chakrabarti, 2019).

Transfer Learning on Networks. We wish to estimate the target network Q.

However, we only observe fQ on
(
nQ
2

)
pairs of nodes, for a uniformly random subset of

variables S ⊂ {1, 2, . . . , n}. We assume S is vanishingly small, so nQ := |S| = o(n).

Absent additional information, we cannot hope to achieve o(1) mean-squared error.

To see this, suppose fQ is a stochastic block model with 2 communities of equal size. For a

node i 6∈ S, no edges incident to i are observed, so its community cannot be learned. Since

nQ � n, we will attain Ω(1) error overall. To attain error o(1), we hope to leverage transfer

learning from a source P if available. In fact, we give an efficient algorithm to achieve o(1)

error, formally stated in Section 2.2.

Theorem 2.1.1 (Theorem 2.2.3, Informal). There exists an efficient algorithm such that,

if given source data AP ∈ {0, 1}n×n and target data AQ ∈ {0, 1}nQ×nQ coming from an

appropriate pair (fP , fQ) of latent variable models, outputs Q̂ ∈ Rn×n such that

P
[

1

n2
‖Q− Q̂‖2

F ≤ o(1)

]
≥ 1− o(1).

There must be a relationship between P and Q for them to be an appropriate pair for

transfer learning. We formalize this relationship below.

Relationship Between Source and Target. It is natural to consider pairs (fP , fQ)

such that for all x,y ∈ X, the difference (fP (x,y) − fQ(x,y)) is small. For example, Cai
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and Pu (2024) study transfer learning for nonparametric regression when fP − fQ is close to

a polynomial in x,y. But, requiring fP − fQ to be pointwise small does not capture a broad

class of pairs in the network setting. For example, if fP = αfQ. Then fP − fQ = (α− 1)fQ

can be far from all polynomials if fQ is, e.g. a Hölder -smooth graphon.2 However, under the

network model, this means AP and AQ are stochastically identical modulo one being α times

denser than the other.

We will therefore consider pairs (fP , fQ) that are close in some measure of local graph

structure. With this in mind, we use a graph distance introduced in Mao et al. (2021) for a

different inference problem.

Definition 2.1.2 (Graph Distance). Let P ∈ [0, 1]n×n be the probability matrix of a graph.

For i, j ∈ [n], i 6= j, we define the graph distance between them as follows:

dP (i, j) := ‖(ei − ej)TP 2(I − eieTi − ejeTj )‖2
2,

where ei, ej ∈ Rn are standard basis vectors.

Intuitively, this first computes the matrix P 2 of common neighbors, and then computes

the distance between two rows of the same (ignoring the diagonal elements). We will require

that fP , fQ satisfy a local similarity condition on the relative rankings of nodes with respect

to this graph distance. Since we only estimate the probability matrix of Q, the condition

is on the latent variables x1, . . . ,xn of interest. The hope is that the proximity in graph

distance reflects the proximity in latent positions.

Definition 2.1.3 (Rankings Assumption at Quantile hn). Let (P,Q) be a pair of graphs

evaluated on n latent positions. We say (P,Q) satisfy the rankings assumption at quantile

hn ≤ 1 if there exists constant C > 0 such that for all i ∈ [n] and all j 6= i, if j belongs to the

bottom hn-quantile of dP (i, ·), then j belongs to the bottom Chn-quantile of dQ(i, ·).

To further motivate Definition 2.1.3, recall our motivating example of biological

network estimation. Previous works require some form of similarity between networks to

enable transfer Sen et al. (2018); Fan et al. (2019); Baranwal et al. (2020). For example,

Kshirsagar et al. (2013) require a commonality hypothesis: if pathogens A, B target the same

2In fact, Cai and Pu (2024) highlight this exact setting as a direction for future work.
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neighborhoods in a protein interaction network, one can transfer from A to B. Our rankings

assumption similarly posits that to transfer knowledge from A to B, A and B have similar

2-hop neighborhood structures.

Note that Definition 2.1.3 involves quantiles of graph distances; therefore it is a relative

condition, because it depends on a rank-ordering within both graphs P,Q before comparison.

On the other hand, an absolute condition would require that for nodes i, j ∈ [n], if e.g.

dP (i, j) < 100 then dQ(i, j) < C · 100. Our condition is more flexible and will hold for a larger

set of graph pairs (P,Q), such as pairs where one graph is much more dense than the other.

Finally, to illustrate Definition 2.1.3, consider stochastic block models fP , fQ with

kP ≥ kQ communities respectively. If nodes i, j are in the same communities then Pei = Pej ,

so dP (i, j) = 0. We require that j minimizes dQ(i, ·). This occurs if and only if dQ(i, j) = 0.

Hence if i, j belong to the same community in P , they are in the same community in Q. Note

that the converse is not necessary; we could have Q with 1 community and P with arbitrarily

many communities.

With the relationship between the source and target defined by the rankings assump-

tion, our contributions are as follows.

(1) Algorithm for Latent Variable Models. We provide an efficient Algorithm 1

for latent variable models with Hölder-smooth fP , fQ. The benefit of this algorithm is that

it does not assume a parametric form of fP and fQ. We prove a guarantee on its error in

Theorem 2.2.3.

(2) Minimax Rates. We prove a minimax lower bound for Stochastic Block Models

(SBMs) in Theorem 2.3.2. Moreover, we provide a simple Algorithm 2 that attains the

minimax rate for this class (Proposition 2.3.4).

(3) Experimental Results on Real-World Data. We test both of our algorithms

on real-world metabolic networks and dynamic email networks, as well as synthetic data

(Section 2.4).

All proofs are deferred to the Section 2.6.

Next, we review some additional related work.

Transfer learning has recently drawn a lot of interest both in applied and theoretical

communities. The notion of transferring knowledge from one domain with a lot of data to
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another with less available data has seen applications in epidemiology Apostolopoulos and

Bessiana (2020), computer vision Long et al. (2015); Tzeng et al. (2017a); Huh et al. (2016);

Donahue et al. (2014); Neyshabur et al. (2020), natural language processing Daumé (2007),

etc. For a comprehensive survey see Zhuang et al. (2019); Weiss et al. (2016); Kim et al.

(2022). Recently, there have also been advances in the theory of transfer learning Yang et al.

(2013); Tripuraneni et al. (2020); Agarwal et al. (2023a); Cai and Wei (2021a); Cai and Pu

(2024); Cody and Beling (2023).

In the context of networks, transfer learning is particularly useful since labeled data is

typically hard to obtain. Tang et al. (2016) develop an algorithmic framework to transfer

knowledge obtained using available labeled connections from a source network to do link

prediction in a target network. Lee et al. (2017) proposes a deep learning framework for graph-

structured data that incorporates transfer learning. They transfer geometric information from

the source domain to enhance performance on related tasks in a target domain without the

need for extensive new data or model training. The SGDA method Qiao et al. (2023) introduce

adaptive shift parameters to mitigate domain shifts and propose pseudo-labeling of unlabeled

nodes to alleviate label scarcity. Zou et al. (2021) proposes to transfer features from the

previous network to the next one in the dynamic community detection problem. Simchowitz

et al. (2023a) work on combinatorial distribution shift for matrix completion, where only some

rows and columns are given. A similar setting is used for link prediction in egocentrically

sampled networks in Wu et al. (2018). Zhu et al. (2021) train a graph neural network for

transfer based on an ego-graph-based loss function. Learning from observations of the full

network and additional information from a game played on the network Leng et al. (2020b);

Rossi et al. (2022). Wu et al. (2024) study graph transfer learning for node regression in the

Gaussian process setting, where the source and target networks are fully observed.

Levin et al. (2022) proposes an inference method from multiple networks all with

the same mean but different variances. While our work is related, we do not assume

E[Pij] = E[Qij]. Cao et al. (2010) do joint link prediction on a collection of networks with

the same link function but different parameters.

Another line of related but different work deals with multiplex networks (Lee et al.,

2014b, 2015; Iacovacci and Bianconi, 2016; Cozzo et al., 2018) and dynamic networks Sarkar

and Moore (2005); Kim et al. (2018); Sewell and Chen (2015); Sarkar et al. (2012); Chang
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et al. (2024); Wang et al. (2023). One can think of transfer learning in clustering as

clustering with side information. Prior works consider stochastic block models with noisy

label information (Mossel and Xu, 2016; Mazumdar and Saha, 2017b) or oracle access to the

latent structure (Mazumdar and Saha, 2017a).

Notation. Throughout this chapter, all asymptotics O(·), o(·),Ω(·), ω(·) are with

respect to nQ unless specified otherwise.

2.2 Estimating Latent Variable Models with Rankings

In this section, we present a computationally efficient transfer learning algorithm for

latent variable models. Algorithm 1 learns the local structure of P based on graph distances

(Definition 2.1.2). For each node i of P , it ranks the nodes in S with respect to the graph

distance dP (i, ·). For most nodes i, j ∈ [n], none of the edges incident to i or j are observed

in Q. Therefore, we estimate Q̂ij by using the edge information about nodes r, s ∈ S such

that dP (i, r) and dP (j, s) are small.

Formally, we consider a model as in Eq. (2.1) with a compact latent space X ⊂ Rd and

latent variables sampled i.i.d. from the normalized Lebesgue measure on X. We set X = [0, 1]d

without loss of generality and assume that functions f : X× X→ [0, 1] are α-Hölder-smooth.

Definition 2.2.1. Let f : X × X → R and α > 0. We say f is α-Hölder -smooth if there

exists Cα > 0 such that for all x,x′,y ∈ X,
∑

κ∈Nd:
∑
i κi=bαc

| ∂
∑
i κif

∂κ1x1 · · · ∂κdxd
(x,y)− ∂

∑
i κif

∂κ1x1 · · · ∂κdxd
(x′,y)| ≤ Cα‖x− x′‖α∧1

2 .

To exclude degenerate cases where a node may not have enough neighbors in latent

space, we require the following assumption.

Assumption 2.2.2 (Assumption 3.2 of Mao et al. (2021)). Let G be a graph on x1, . . . ,xn.

There exist c2 > c1 > 0 and ∆n = o(1) such that for all xi,xj,

c1‖xi − xj‖α∧1 −∆n ≤
1

n3
dG(i, j) ≤ c2‖xi − xj‖α∧1.

The second inequality follows directly from Hölder-smoothness, and the first is shown

to hold for e.g. Generalized Random Dot Product Graphs, among others (Mao et al., 2021).

We establish the rate of estimation for Algorithm 1 below.
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Algorithm 1 Q̂-Estimation for Latent Variable Models
Input: AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , S ⊂ [n] s.t. |S| = nQ
Initialize Q̂ ∈ Rn×n to be all zeroes
For all i, all j 6= i, compute graph distances:

dAP (i, j) := ‖(ei − ej)T (AP )2(I − eieTi − ejeTj )‖2
2

Fix a bandwidth h ∈ (0, 1) based on n, nQ
for i = 1 to n do

Let TAPi (h) ⊂ S be bottom h-quantile of S with respect to dAP (i, ·) if i ∈ S then
Update TAPi (h)← TAPi (h) ∪ {i}

end
end
for i = 2 to n do

for j = 1 to i− 1 do
Compute Q̂ij = Q̂ji by averaging:

Q̂ij :=
1

|TAPi (h)||TAPj (h)|
∑

r∈TAPi (h)

∑

s∈TAPj (h)

AQ;rs

end
end
return Q̂

Theorem 2.2.3. Let Q̂ be as in Algorithm 1. Let fP be α-Hölder-smooth and fQ be β-

Hölder-smooth for β ≥ α > 0, and let c be an absolute constant. Suppose (P,Q) satisfy

Definition 2.1.3 at hn = c
√

lognQ
nQ

and P satisfies Assumption 2.2.2 with ∆n = O(( logn
nQ

)
1
2
∨α∧1

d ).

Then there exists an absolute constant C > 0 such that

P
[

1

n2
‖Q̂−Q‖2

F .

(
d

2

)β∧1
2
(

log n

nQ

)β∧1
2d
]
≥ 1− n−CQ .

To parse Theorem 2.2.3, consider the effect of various parameter choices. First, observe

that our upper bound scales quite slowly with n. Even if n is superpolynomial in nQ, e.g.

n = n
lognQ
Q , then log n = O((log nQ)2) = n

o(1)
Q , so the overall effect on the error is dominated

by the nQ term.

Second, the bound is worse in large dimensions, and scales exponentially in 1
d
. This

kind of scaling also occurs in minimax lower bounds for nonparametric regression (Tsybakov,
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2009), and upper bounds for smooth graphon estimation (Xu, 2018). However, we caution

that nonparametric regression can be quite different from network estimation; it would be

very interesting to know the dependence of dimension on minimax lower bounds for network

estimation, but to the best of our knowledge this is an open problem. Finally notice that a

greater smoothness β results in a smaller error, up to β = 1, exactly as in (Gao et al., 2015;

Klopp et al., 2017; Xu, 2018).

2.3 Minimax Rates for Stochastic Block Models

In this section, we will show matching lower and upper bounds for a very structured

class of latent variable models, namely, Stochastic Block Models (SBMs).

Definition 2.3.1 (SBM). Let P ∈ [0, 1]n×n. We say P is an (n, k)-SBM if there exist

B ∈ [0, 1]k×k and z : [n]→ [k] such that for all i, j, Pij = Bz(i)z(j). We refer to z−1({j}) as

community j ∈ [k].

We first state a minimax lower bound, proved via Fano’s method.

Theorem 2.3.2 (Minimax Lower Bound for SBMs). Let kP ≥ kQ ≥ 1 with kQ dividing

kP . Let F be the family of pairs (P,Q) where P is an (n, kP )-SBM, Q is an (n, kQ)-SBM,

and (P,Q) satisfy Definition 2.1.3 at hn = 1/kP . Moreover, suppose S ⊂ [n] is restricted to

contain an equal number of nodes from communities 1, 2, . . . , kP of P . Then the minimax

rate of estimation is:

inf
Q̂∈[0,1]n×n

sup
(P,Q)∈F

E
[

1

n2
‖Q̂−Q‖2

F

]
&
k2
Q

n2
Q

.

Note that Definition 2.1.3 at hn = 1/kP implies that the true community structure of

Q coarsens that of P . The condition that kQ divides kP is merely a technical one that we

assume for simplicity.

We remark that minimax lower bounds for smooth graphon estimation are established

by first showing lower bounds for SBMs, and then constructing a graphon with the same block

structure using smooth mollifiers (Gao et al., 2015). Therefore, we expect that Theorem 2.3.2

can also be extended to the graphon setting, using the same techniques. However, sharp lower
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bounds for other classes such as Random Dot Product Graphs will likely require different

techniques (Xie and Xu, 2020; Yan and Levin, 2023).

Remark 2.3.3 (Clustering Regime). In Appendix 2.6.4 we also prove a minimax lower bound

of log kQ
nQ

in the regime where the error of recovering the true clustering z dominates. This

matches the rate of Gao et al. (2015), but for estimating all n2 entries of Q, rather than just

the n2
Q observed entries.

Theorem 2.3.2 suggests that a very simple algorithm might achieve the minimax

rate. Namely, use both AP , AQ to learn communities, and then use only AQ to learn inter-

community edge probabilities. If (P,Q) are in the nonparametric regime where regression

error dominates clustering error (called the weak consistency or almost exact recovery regime),

then the overall error will hopefully match the minimax rate.

We formalize this approach in Algorithm 2, and prove that it does achieve the minimax

error rate in the weak consistency regime. To this end, we define the signal-to-noise ratio of

an SBM with parameter B ∈ [0, 1]k×k as follows:

s :=
p− q√
p(1− q)

,

where p = miniBii, q = maxi 6=j Bij.

Algorithm 2 Q̂-Estimation for Stochastic Block Models
Input: AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , S ⊂ [n] s.t. |S| = nQ
Estimate clusterings ẐP ∈ {0, 1}n×kP , ẐQ ∈ {0, 1}nQ×kQ using Chen et al. (2014) on AP , AQ
respectively Let ŴQ ∈ RkQ×kQ be diagonal with

ŴQ;ii = (1T ẐQei)
−1

Initialize Π̂ ∈ {0, 1}kP×kQ to be all zeroes for i ∈ S do
Let jP ∈ [kP ], jQ ∈ [kQ] be the unique column indices at which row i of ẐP , ẐQ respectively
are nonzero Let Π̂jP ,jQ = 1

end
Let B̂Q ∈ [0, 1]kQ×kQ be the block-average:

B̂Q = ŴQẐ
T
QAQẐQŴQ

return Q̂ := ẐP Π̂B̂QΠ̂T ẐT
P
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Proposition 2.3.4 (Error Rate of Algorithm 2). Suppose P,Q ∈ [0, 1]n×n are (n, kP ), (n, kQ)-

SBMs with minimum community sizes n(P )
min, n

(Q)
min respectively. Suppose also that (P,Q)

satisfy Definition 2.1.3 at hn = n
(P )
min/n. Then if the signal-to-noise ratios are such that:

sP ≥ C(
√
n

n
(P )
min

∨ log2(n)√
n
(P )
min

) and sQ ≥ C(
√
nQ

n
min(Q)

∨ log2(nQ)√
n
(Q)
min

) for large enough constant C > 0,

Algorithm 2 returns Q̂ such that

P
[

1

n2
‖Q̂−Q‖2

F .
k2
Q log(n

(Q)
min)

n2
Q

]
≥ 1−O

(
1

nQ

)
.

2.4 Experiments

In this section, we test Algorithm 1 against several classes of simulated and real-world

networks. We use quantile cutoff of hn =
√

lognQ
nQ

for Algorithm 1 in all experiments.

Baselines. To the best of our knowledge, our exact transfer formulation has not been

considered before in the literature. Therefore, we implement two algorithms as alternatives

to Algorithm 1.

(1) Algorithm 2. Given AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , let kP = d√ne, kQ =
⌈√

nQ
⌉
. Compute spectral clusterings ẐP , ẐQ with kP , kQ clusters respectively. Let JS ∈

{0, 1}nQ×n is such that JS;ij = 1 if and only if i = j and i ∈ S. The projection Π̂ ∈ RkP×kQ

solves the least-squares problem min
Π∈RkP×kQ ‖JSẐPΠ− ẐQ‖2

F . We compute the Π̂ differently

from steps 4-7 in Algorithm 2 to account for cases where Q is not a true coarsening of P .

When Q is a true coarsening of P , this reduces to the procedure in steps 4-7. Given ẐP , Π̂

we return Q̂ as in Algorithm 2.

(2) Oracle. Suppose that an oracle can access data for Q on all n � nQ nodes as

follows. Fix an error probability p ∈ (0, 1). The oracle is given symmetric A′Q ∈ {0, 1}n×n

with independent entries following a mixture distribution. For all i, j ∈ [n] with i < j let

Xij ∼ Bernoulli(p) and Yij ∼ Bernoulli(Q(xi,xj)). Then:

A′Q;ij = 1i∈S,j∈SYij + (1− 1i∈S,j∈S)((1−Xij)Yij +Xij(1− Yij)).

Given A′Q, the oracle returns the estimate from Universal Singular Value Thresholding

on A′Q Chatterjee (2015b). As p → 0, the error will approach O(n
−2β
2β+d ) for a β-smooth
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network on on d-dimensional latent variables (Xu, 2018), so the oracle will outperform any

transfer algorithm.

Simulations. We first test on several classes of simulated networks. For nQ = 50, n = 200,

we run 50 independent trials for each setting. We report results for each setting in Table 2.1,

and visualize estimates for stylized examples in Figure 2.1.

At a glance, Figure 2.1 shows that Algorithms 1 and 2 both work well on Stochastic

Block Models (first row), that only Algorithm 1 works well on graphons (second and third

rows), and that the Oracle performs well in all cases.

Smooth Graphons. The latent space is X = [0, 1]. We consider graphons of the form

fγ(x, y) = xγ+yγ

2
where P,Q have different γ. We denote this the γ-Smooth Graphon.

Mixed-Membership Stochastic Block Model. Set kP = b√nc, kQ =
⌊√

nQ
⌋
. The latent

space X is the probability simplex X = ∆kP := {x ∈ [0, 1]kP :
∑

i xi = 1} ⊂ RkP . The

latent variables x1, . . . ,xn are iid-Dirichlet distributed with equal weights 1
kP
, . . . , 1

kP
. Then

Pij = xTi BPxj and Qij = Π(xi)
TBQΠ(xj), for connectivity matrices BP ∈ [0, 1]kP×kP , BQ ∈

[0, 1]kQ×kQ , and projection Π : ∆kP → ∆kQ for a fixed subset of [kP ]. For parameters

a, b, ε ∈ [0, 1] we generate B ∈ [0, 1]k×k by sampling E ∈ Uniform(−ε, ε)k×k and set B =

clip((a− b)I + b11T + E, 0, 1). We call this Noisy-MMSB(a, b, ε).

Latent Distance Model. The latent space is the unit sphere X = Sd−1 ⊂ Rd. For scale

parameter s > 0, we call fs(x,y) = exp(−s‖x− y‖2) the Rd-Latent(s) model.

Discussion. When the latent dimension is larger than 1 (the Noisy MMSB and

Latent Variable Models), our Algorithm 1 is better than both Algorithm 2 and the Oracle

with p = 0.1. Note that Algorithms 1 and 2 use
n2
Q

n2 ≈ 0.06 unbiased edge observations from

Q, while the Oracle with p = 0.1 observes (1− p)n
2−n2

Q

n2 ≈ 0.9 unbiased edge observations in

expectation.

Real-World Data. Next, we test on two classes of real-world networks. We summa-

rize our dataset characteristics in Table 2.2. See Appendix 2.8 for further details.

Transfer Across Species in Metabolic Networks. For a fixed organism, a

metabolic network has a node for each metabolite, and an edge exists if and only if two

metabolites co-occur in a metabolic reaction in that organism. We obtain the unweighted

metabolic networks for multiple gram-negative bacteria from the BiGG genome-scale metabolic
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Source Target Alg. 1 Alg. 2 Oracle
(p =
0.1)

Oracle
(p =
0.3)

Oracle
(p =
0.5)

Noisy-
MMSB
(0.7, 0.3, 0.01)

Noisy-
MMSB
(0.9, 0.1, 0.01)

0.7473±
0.0648

1.3761±
1.1586

0.9556
±
0.0633

2.2568±
0.3107

4.2212±
0.2825

0.1-
Smooth
Graphon

0.5-
Smooth
Graphon

1.7656
±
0.7494

4.5033±
1.5613

0.5016
±
0.0562

2.4423±
0.4574

5.7774±
0.7126

R10

Latent(2.5)
R10

Latent(1.0)
0.5744
±
0.1086

1.1773±
1.0481

0.7715
±
0.0456

2.1822±
0.2741

4.3335±
0.3476

Table 2.1: Comparison of different algorithms on simulated networks. Each cell reports µ̂±2σ̂
of the mean-squared error over 50 independent trials. Error numbers are all scaled by 1e2 for
ease of reading. Bold: Best algorithm. Emphasis: Second-best algorithm.

Table 2.2: Dataset Characteristics

Name n Median Degree Type

BiGG Model iWFL1372 251 15.00 Source
BiGG Model iPC815 251 12.00 Source
BiGG Model iJN1463 251 14.00 Target
Email-EU Days 1-80 1005 6.92 Source
Email-EU Days 81-160 1005 7.35 Target
Email-EU Days 561-640 1005 7.66 Target

model dataset (King et al., 2016; Norsigian et al., 2020). In the left half of Figure 2.2, we

compare two choices of source organism in estimating the network for BiGG model iJN1463

(Pseudomonas putida). For a good choice of source, Algorithm 1 is competitive with the

Oracle at p = 0.1.

Transfer Across Time in the Email Interaction Networks. We use the Email-

EU interaction network between n = 1005 members of a European research institution across

803 days Leskovec and Krevl (2014); Paranjape et al. (2017). The source graph AP is the

network from day 1 to ≈ 80 ([1, 80]). In Figure 2.2 we simulate transfer with targets [81, 160]

(left) and [561, 640] (right). We visualize results for arbitrary target periods; similar results

hold for other targets. Unlike metabolic networks, Algorithm 2 has comparable performance

to both our Algorithm 1 and the oracle algorithm with p ∈ {0.01, 0.05}. Compared to
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Figure 2.1: Comparison of algorithms on three source-target pairs (n = 2000, nQ = 500).
Each row corresponds to a different source/target pair (P,Q). For a fixed row, the upper
triangular part on columns 2, 3, 4 corresponds a Q̂ for a different algorithm. The upper
triangular part of column 1 shows the true P . The lower triangular part of columns 1, 2, 3,
and 4 is identical for a fixed row, and shows the true Q. In each heatmap, the lower triangle
is the target Q. Algorithm 2 performs best when (P,Q) are SBMs (top), while Algorithm 1
is better for smooth graphons (2nd and 3rd rows).

the metabolic networks, this indicates that the email interaction networks are relatively

well-approximated by SBMs, although Algorithm 1 is still the best.

Additional Experiments and Baseline. In Appendix 2.7.1, we present additional

ablation experiments that test the dependence of Algorithms 1 and 2 on all relevant

parameters. We compare their performance to the Oracle baseline with p = 0.0 (the non-

transfer setting), and an additional baseline adapted from Levin et al. (2022). We find that

our Algorithms outperform this new baseline but are worse than the Oracle with p = 0.0, as

expected. Further, in Appendix 2.7.2, we test our Algorithms and original baselines on a link
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Figure 2.2: Results of network estimation on real-world data. Shaded regions denote [1, 99]
percentile outcomes from 50 trials.
Left half: Estimating metabolic network of iJN1463 (Pseudomonas putida) with source
iWFL1372 (Escherichia coli W) leftmost, and source iPC815 (Yersinia pestis) second-left.
Right half: Using source data from days 1− 80 of Email-EU to estimate target days 81− 160
(third-left) and target days 561− 640 (rightmost). Note that we use smaller values of p for
the Oracle in Email-EU.

prediction task in the setting of Figure 2.2. We find that the relative accuracy of the methods

for link prediction is qualitatively similar to that of Figure 2.2, and the Oracle performs even

better with sparsity tuning.

2.5 Conclusion

In this paper, we study transfer learning for network estimation in latent variable

models. We show that there exists an efficient Algorithm 1 that achieves vanishing error even

when n ≥ n
ω(1)
Q , and a simpler Algorithm 2 for SBMs that achieves the minimax rate.

There are several interesting directions for future work.

First, we believe that Algorithm 1 works for moderately sparse networks with pop-

ulation edge density Ω( 1√
n
). This is because the concentration of empirical graph distance

(Algorithm 1 line 3) requires expected edge density Ω̃(n−1/2) Mao et al. (2021). It would be

interesting to see if a similar approach can work for edge density Ω( logn
n

). For example, in the

aforementioned paper it is shown that a variation of the graph distance of Definition 2.1.2

concentrates at expected edge density Ω̃(n−2/3). While is this still far from the Ω( logn
n

) regime,

it suggests that variations on the graph distance might ensure our Algorithm 1 works for

sparser graphs.

Second, the case of multiple sources is also interesting. We have focused on the case
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of one source distribution, as in Cai and Wei (2021a); Cai and Pu (2024), but expect that

our algorithms can be extended to multiple sources as long as they satisfy Definition 2.1.3.

2.6 Proofs
2.6.1 Preliminaries

Recall Hoeffding’s inequality.

Lemma 2.6.1 (Hoeffding (1994)). Let X1, . . . , Xn be independent random variables such

that ai ≤ Xi ≤ bi almost surely for all i ∈ [n]. Then

P
[
|
n∑

i=1

(Xi − E[Xi])| ≥ t

]
≤ 2 exp

( −2t2

n∑
i=1

(bi − ai)2

)
.

We also need Bernstein’s inequality.

Lemma 2.6.2 (Bernstein’s Inequality). Let X1, . . . , Xn be independent mean-zero random

variables with |Xi| ≤ 1 for all i and n ≥ 5. Then

P
[
| 1
n

n∑

i=1

Xi| ≥ t

]
≤ 2 exp

( −nt2
2(1 + t

3
)

)
≤ 2 exp

(
− nt2

4

)
.

2.6.2 Proof of Theorem 2.2.3

Throughout this section, let X = [0, 1]d and µ : X→ [0, 1] be the normalized Lebesgue

measure.

We require the following Lemmata.

Lemma 2.6.3. Let υ ∈ (0, 1) and µ : X→ [0, 1] be the normalized Lebesgue measure. Then

for all x ∈ X,

µ(Ball(x, 2υ) ∩ X) ≥ µ(Ball(0, υ) ∩ X).

Proof. Recall X = [0, 1]d. Fix x ∈ X, υ > 0. Note that µ(Ball(x, υ)∩X) is smallest when x is a

vertex of the hypercube; therefore take x ∈ {0, 1}d without loss of generality. Then, note that
for each z ∈ Ball(x, υ)∩X, we can find (2d− 1) other points z′ ∈ Ball(x, υ) \X by reflecting
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subsets of coordinates of z about x. There are 2d − 1 such nonempty subsets of coordinates.

This shows that µ(Ball(x, υ) ∩X) ≥ µ(Ball(x, υ))/2d for all x. Since µ(Ball(x, υ)) � υd, the

conclusion follows.

We will repeatedly make use of the concentration of latent positions.

Lemma 2.6.4 (Latent Concentration). Let X = [0, 1]d and µ denote the normalized Lebesgue

measure on X. Suppose x1, . . . ,xn ∼ X are sampled iid and uniformly at random from µ.

Fix some T ⊂ X such that µ(T ) = v. Then

P
[∣∣vn− |{j ∈ [n] : xj ∈ T}|

∣∣ ≥ 10

√
log n

n

]
≤ n−10.

Proof. Let Xi be an indicator variable that equals 1 if xi ∈ T and zero otherwise. Notice the

Xi are iid and bounded within [0, 1]. Moreover,
∑

i E[Xi] = nµ(T ). Therefore by Hoeffding’s

inequality, for any t > 0,

P[|vn− |{j ∈ [n] : xj ∈ T}|| ≥ t] ≤ 2 exp

(−2t2

n

)
.

Setting t = 10
√

logn
n

gives the result.

Corollary 2.6.5. Let ε > 0. For i ∈ [n] let ε′i > 0 be ε′i := sup{υ > 0 : µ(Ball(xi, υ)∩X) ≤ ε.

Let Ti := Ball(xi, ε
′
i) ∩ X. Let ui(S) := |{j ∈ S : xj ∈ Ti}| denote the number of members of

S landing in Ti. Then

P
[
∀i ∈ [n] : |ui(S)− nQε| ≤ 10

√
log n

nQ

]
≥ 1− n−8.

Proof. Notice that each Ti has Lebesgue measure ε by definition. Therefore E[ui(S)] = nQε.

Since S has nQ members, setting t = 10
√

logn
nQ

in the statement of Lemma 2.6.4 and taking a

union bound over all i ∈ [n] gives the conclusion.

We will decompose the error of Algorithm 1 into two parts.
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Proposition 2.6.6. Let Q̂ ∈ [0, 1]n×n be the estimator from Algorithm 1. Then

1

n2
‖Q− Q̂‖2

F ≤
2

n2

∑

i,j∈[n]

(JS(i, j) + JB(i, j)),

where JS, JB are the smoothing and Bernoulli errors respectively:

JS(i, j) :=
1

|Ti|2|Tj|2
( ∑

r∈Ti,s∈Tj

Qij −Qrs

)2

;

JB(i, j) :=
1

|Ti|2|Tj|2
( ∑

r∈Ti,s∈Tj

Qrs − AQ;rs

)2

.

Controlling the Bernoulli errors is relatively straightforward.

Proposition 2.6.7. Let h be the bandwidth of Algorithm 1. The Bernoulli error is at most

O( logn
m

) with probability ≥ 1− n−8, where m = h2n2
Q.

Proof. Fix i, j ∈ [n]. We will bound the maximum Bernoulli error JS(i, j) over i, j, which

suffices to bound the average. Let m = |Ti||Tj|. We want to bound:

| 1

|Ti||Tj|
∑

r∈Ti,s∈Tj

(Qrs − AQ;rs)|2.

Notice each summand is bounded within ± 1
m
. Bernstein’s inequality gives:

P
[(

1

|Ti||Tj|
∑

r∈Ti,s∈Tj

Qrs − AQ;rs

)2

≥ t2
]
≤ 2 exp(−0.5t2m).

Setting t = C
√

logn
m

for large enough C = O(1), a union bound tells us that with probability

≥ 1− n−8, the Bernoulli error is bounded by t2.

Corollary 2.6.8. The Bernoulli error is at most O(
√

lognQ
nQ

) with probability ≥ 1− n−4
Q .

The rest of this section is devoted to bounded the smoothing errors JS(i, j).
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2.6.2.1 Latent Distance to Graph Distance

We claim that if nodes are close in the latent space then they are close in graph

distance.

Proposition 2.6.9. Suppose that ‖xi − xr‖ ≤ ε and Q is β-smooth. Then dQ(i, r) ≤
C2
βn

3ε2(β∧1).

Proof. We the use smoothness of Q. By definition there exists Cβ > 0 such that Qki−Qkr ≤
Cβ‖xi − xr‖β∧1. Therefore,

dQ(i, r) =
∑

`6=i,r

|(Q2)`i − (Q2)`r|2

=
∑

`6=i,r

(∑

k∈[n]

Q`k(Qki −Qkr)

)2

≤
∑

`6=i,r

∑

k∈[n]

Q2
`kC

2
βε

2(β∧1)

≤ n3C2
βε

2(β∧1).

We can now bound the minimum sizes of the neighborhoods using the concentration

of latent positions and the smoothness of the graphon.

Lemma 2.6.10 (Vershynin (2018b)). The volume of a ball of radius r > 0 in Rd is
√
π
d

Γ(d/2+1)
rd,

where Γ(·) is the Γ function.

Proposition 2.6.11. Let Cd = (Γ(d
2
+1))1/d. Let C0, C

′ be constants. If υn ≥ C·Cd(
√

logn
nQ

)1/d

for large enough constant C > 0, and gn = C0C
2
βn

2(υn)2(β∧1), then with probability ≥ 1− n−6

for all i ∈ [n] the neighborhood size is |{r : dQ(i, r) ≤ gn}| ≥ C ′nQ
√

logn
nQ

.

Proof. Fix i ∈ [n] and υn > 0. Let εi denote the Lebesgue measure of Ball(xi, υn) ∩ X. By

Lemma 2.6.3 and Lemma 2.6.10, for all i, εi ≥ (
√
πυn

2Cd
)d = (0.5

√
πυn

Cd
)d. Let ε = mini∈[n] εi.

By Corollary 2.6.5, with probability ≥ 1− n−8, there are nQε− C
√

logn
nQ

members j

of S such that ‖xi − xj‖ ≤ υn. A union bound over i gives the result simultaneously for all i

with probability ≥ 1− n−6.

From Proposition 2.6.9, it follows that for all i ∈ [n],

|{r ∈ S : dQ(i, r) ≤ C2
βn

2(2υ′n)2(β∧1)}| ≥ nQε− 10

√
log n

nQ
.
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Choosing υn ≥ C · Cd( logn
nQ

)
1
2d for large enough C > 0 gives the conclusion.

2.6.2.2 Graph Distance Concentration

Next, we show that the empirical graph distance concentrates to the population

distance.

Proposition 2.6.12. For any arbitrary symmetric P ∈ [0, 1]n×n, we have, for all i, j simul-

taneously with probability at least ≥ 1−O(n−8), that

|dAP (i, j)− dP (i, j)| ≤ O(n2 log n) +O(n2.5
√

log n).

Proof. Fix i, j. Let Cij := (A2
P )ij. By Mao et al. (2021) A.1, we have Cij = (P 2)ij + tij for

an error term tij such that P[∀i, j : |tij| ≤ 10
√
n log n] ≥ 1− n−10. Then,

|dAP (i, j)− dP (i, j)| = |
∑

` 6=i,j

(
(Ci` − Cj`)2 − ((P 2)i` − (P 2)j`)

2
)
|

=
∑

6̀=i,j

|(ti` + tj`)
2 + 2(ti` + tj`)((P

2)i` − (P 2)j`)|

≤ O(n2 log n) +O

(√
n log n

∑

`6=i,j

(
(P 2)i` − (P 2)j`

))
.

Finally, notice that all entries of P 2 are of size O(n), so the conclusion follows.

Finally, we will show that taking the restriction of the graph distance T Pi to nodes in

S ⊂ [n] does not incur too much error.

Proposition 2.6.13. Suppose n = n
O(1)
Q . Then there exists a constant C such that if

h0 ≥ C
√

logn
nQ

+ ∆n, then for all i, r simultaneously, r ∈ TAPi (h0) implies r ∈ T Pi (h2) for

some h2 = O(h) with probability ≥ 1−O(n−5).

Proof. Let us introduce the notation T P,Si (h) to denote the bottom h-quantile of {dP (i, j) :

j ∈ S}. In this notation, TAPi (h) := TAP ,Si (h) since we restrict the quantile to nodes

in S. From Proposition 2.6.12 and Assumption 2.2.2, we know that if n ≥ nQ then for

h0 ≤ h1 − 20
√

logn
n
− ∆n we have TAPi (h0) ⊆ T P,Si (h1) simultaneously for all i ∈ [n] with

probability ≥ 1−O(n−8). It remains to compare T P,Si (h1) with T Pi (h2) for some h2.
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We claim that if h2 ≥ 30
√

lognQ
nQ

then P[∀i|T Pi ∩S| ≥ h2nQ−3
√
nQ log nQ] ≥ 1−O(n−2

Q ).

To see this, fix i ∈ [n] and consider T Pi (h2). For j ∈ S, let Xj be the indicator variable:

Xj =

{
1 if j ∈ T Pi (h2),

0 otherwise.

Notice that |T Pi (h2) ∩ S| =
∑

j∈S Xj. By Hoeffding’s inequality, since E[
∑

j∈S Xj] = h2nQ

and |Xj − h2| ≤ 1 for all j, we have

P
[
||T Pi (h2) ∩ S| − h2nQ| ≥ 3

√
nQ log n

]
≤ 2 exp

(
− 6n2

Q log n

n2
Q

)
≤ 2n−6.

Taking a union bound over all i ∈ [n] shows the claim holds with probability ≥ 1−O(n−5).

Therefore we set h1 ≤ h2 − 3.1
√

logn
nQ

then j ∈ T P,Si (h1) implies j ∈ T Pi (h2).

The conclusion follows with C = 24
√

logn
lognQ

= O(1).

The ranking condition (Definition 2.1.3) then allows us to translate between graph

distances in AP and Q.

Corollary 2.6.14. Suppose that Definition 2.1.3 holds for (P,Q) at hn = c
√

lognQ
nQ

+ ∆n,

for large enough constant c > 0. Suppose nQ ≤ n ≤ n
O(1)
Q . Then for h > hn and r ∈ TAPi (h),

it follows that r ∈ TQi (h3) for some h3 = O(h). The statement holds simultaneously for all

i, r with probability ≥ 1−O(n−5).

2.6.2.3 Control of Smoothing Error

We will decompose smoothing error into a sum of two terms called ES,1 and ES,2. The

control of ES,1 is relatively straightforward.

Lemma 2.6.15. The total smoothing error can be bounded with two terms:

2

n2

∑

i,j∈[n]

JS(i, j) ≤ ES,1 + ES,2,

where

ES,1 :=
C

n
max

j∈[n],s∈Tj
‖Q(ej − es)‖2

2;

ES,2 :=
4

n2

∑

i∈[n]

1

|Ti| E
[∑

r∈Ti

∑

j∈[n]

∑

s∈Tj

(Qrj −Qrs)
2.

]
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Proof. Note that

2

n2

∑

i,j∈[n]

JS(i, j) =
2

n2

∑

i,j∈[n]

1

|Ti|2|Tj|2 E
[( ∑

r∈Ti,s∈Tj

Qij −Qrs

)2]

≤ 2

n

∑

i∈[n]

1

n|Ti|
∑

j∈[n]

2

|Tj| E
[ ∑

r∈Ti,s∈Tj

(Qij −Qrj)
2 + (Qrj −Qrs)

2

]

=
4

n

∑

i∈[n]

1

n|Ti| E
[∑

j

1

|Tj|

(∑

r∈Ti

(Qij −Qrj)
2 +

∑

r∈Ti

∑

s∈Tj

(Qrj −Qrs)
2

)]
.

The second inner summand is precise ES,2. For ES,1, notice that |Ti| = |Tj| = h(nQ − 1) by

definition. Therefore

∑

j

1

|Tj|
∑

r∈Ti

(Qij −Qrj)
2 =

1

h(nQ − 1)

∑

r∈Ti

∑

j

(Qij −Qrj)
2 ≤ 2 max

r∈Ti
‖(ei − er)TQ‖2

2.

We can now bound ES,1 in terms of graph distances.

Lemma 2.6.16. The smoothing error term ES,1 can be bounded as follows:

ES,1 ≤
2

n
max

i∈[n],r∈Ti

√
dQ(i, r) +

2c√
n

for some constant c > 0.

Proof. Fix i ∈ [n] and r ∈ Ti. We have

‖Q(ei − er)‖2
2 ≤ ‖ei − er‖2‖QTQ(ei − er)‖2

≤ 2‖Q2(ei − er)‖2.

Now we will pass to graph distances. Let eab := ((Q2)aa − (Q2)ab)
2 for a, b ∈ [n].

Notice that ‖Q2(ei − er)‖2 =
√
dQ(i, r) + eir + eri. Moreover,

√
eir + eri ≤ 2

√
n since the

entries of Q2 are individually bounded by O(n). The conclusion follows.

Proposition 2.6.17. Suppose ∆n = O(
√

logn
nQ

). Let Cd be the constant of Proposition 2.6.11.

Then if the bandwidth of Algorithm 1 is hn = C
√

logn
nQ

, for a constant C = O(1), then the

smoothing error ES,1 is at most

ES,1 ≤ C2C
β∧1
d

(√
log nQ
nQ

)β∧1
d

for some C2 = O(1), with probability ≥ 1−O(n−6).
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Proof. Fix i ∈ [n] and r ∈ TAPi (hn). By Corollary 2.6.14, if hn ≥ C
√

logn
nQ

+ ∆n for a large

enough constant C > 0, then there exists constant C2 > 0 such that the following holds.

With probability ≥ 1−O(n−5), for all i ∈ [n] and r ∈ S, r ∈ TQi (C2hn),

Let υn = CCd(
√

logn
nQ

)1/d for Cd as in Proposition 2.6.11 and C > 0 large enough

constant. Then by Proposition 2.6.11 the set of s ∈ S such that dQ(i, r) ≤ C0C
2
βn

2(υn)2(β∧1)

has size at least C2nQ
√

logn
nQ

.The statement holds for all i simultaneously with probability at

least 1−O(n−6). Therefore for all i ∈ [n] and r ∈ TAPi (hn), we have

dQ(i, r) ≤ C0C
2
βn

2(υn)2(β∧1)

for some C0, Cβ = O(1), with probability ≥ 1−O(n−6). By Lemma 2.6.16 we conclude that

ES,1 is bounded by 2υβ∧1
n + 2√

n
with the same probability.

2.6.2.4 Control of the Second Smoothing Error

In this section, we show that the second smoothing error can be controlled in terms of

ES,1. We will need to track the following quantity.

Definition 2.6.18 (Membership Count). For r ∈ S and bandwidth h, distance cutoff ε, the

P -neighborhood count of r is ψP (r) := |{j ∈ [n] : r ∈ T Pj (h, ε)}|.

In words, ψP (r) counts the number of nodes j ∈ [n] such that r lands in the neighbor-

hood of j in our algorithm. While we know that |T Pj (h)| ≤ hnQ always, simply applying the

pigeonhole principle gives too weak of a bound on membership counts. The base case is that

there may be a “hub” node r lands in T Pj (h) for all j. We will show that there can be no

such hub node.

Supposing that we can control of the empirical count ψAP , we show that the smoothing

error can be bounded.

Proposition 2.6.19. Let hn be the bandwidth. Then

ES,2 ≤ O

(
ES,1
hnn

)
·max
r∈[n]

(ψAP (r)).
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Proof. Rearranging terms, we have

ES,2 =
1

n2h2n2
Q

∑

i,j∈[n],r∈Ti,s∈Tj

(Qrj −Qrs)
2

=
1

n2h2n2
Q

∑

r∈S

ψAP (r)
∑

j,s

(Qrj −Qrs)
2

=
nQ

n2h2n2
Q

E
r∈S

[
ψAP (r)

∑

j,s

(Qrj −Qrs)
2

]

=
nQ

n2h2n2
Q

E
r∈[n]

[
ψAP (r)

∑

j,s

(Qrj −Qrs)
2

]
,

where the last step follows because j, s do not depend on i, r and because S ⊂ [n] is chosen

uniformly at random. Now, we will control the expectation by passing to a row sum, which

is handled by ES,1.

E
r∈[n]

[
ψAP (r)

∑

j,s

(Qrj −Qrs)
2

]
≤ max

r∈[n]

(
ψAP (r)

n

)
·
∑

j∈[n]

∑

s∈Tj

‖Q(ej − es)‖2
2.

Recall that n2nQhnES,1 = Ω

( ∑
j∈[n]

∑
s∈Tj
‖Q(ej − es)‖2

2

)
. Hence we conclude that

ES,2 ≤ O

(
ES,1
hnn

)
·max
r∈[n]

(ψAP (r)).

We therefore must show that max
r∈S

ψAP (r) ≤ O(hn) with high probability.

Proposition 2.6.20 (Population Version). Suppose Assumption 2.2.2 holds for P with

c1 < c2 and ∆n = O(( logn
nQ

)
1
2
∨α∧1

d ). Then if h ≤ C
√

logn
nQ

for large enough constant C > 0,

then we have max
r∈S

ψP (r) ≤ O(hn) with probability at least 1−O(n−8
Q ).

Proof. Fix r ∈ S. Let Cd be as in Proposition 2.6.11.Suppose that ε = Cd(C + 10)
√

lognQ
nQ

1/d

and h = C
√

lognQ
nQ

. Now, we will claim that for large enough constant c > 0, that ψP (r) is at

most the size of Ball(xr, cε) ∩ {x1, . . . ,xn}.

Suppose that c > 0 is a large enough constant. Now suppose that xj is such that

‖xj − xr‖ ≥ cε. We can lower bound the graph distance using Assumption 2.2.2, as:

dP (r, j) := ‖(er − ej)TP 2(I − ereTr − ejeTj )‖2
2 ≥ c1n

3(cε)2(α∧1) − n3∆n.
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On the other hand, suppose that i ∈ S is such that ‖xi−xj‖ ≤ ε. Then dP (i, j) ≤ C2
αn

3ε2(α∧1)

by Proposition 2.6.9. Therefore since ε = Cd(C + 10)
√

lognQ
nQ

1/d

and ∆n = O(( logn
nQ

)
1
2
∨α∧1

d ),

for large enough c1 > 0 we have

dP (r, j) := ‖(er − ej)TP 2(I − ereTr − ejeTj )‖2
2 ≥

c1

2
n3(cε)2(α∧1).

Then, if we choose c > 0 such that c2(α∧1) > 2C2
α

c1
, then dP (i, j) < dP (r, j).

Next, from our choices of h, ε, by Corollary 2.6.5, simultaneously for all i ∈ [n] there

are at least hnQ nodes in S that have distance ≤ ε in latent space from xi, with probablity

≥ 1−O(n−6
Q ).

Therefore, if xr 6∈ Ball(xj, cε) ∩ {x1, . . . ,xn} then r 6∈ T Pj (h). This implies that

ψP (r) ≤ |{Ball(xr, 2cε)∩{x1, . . . ,xn}|. We can bound the size of this ball with Lemma 2.6.4.

Notice the Lebesgue measure of Ball(xr, 2cε) ∩ [0, 1] is at most (4cε
Cd

)d. Therefore, since xi are

chosen iid from the Lebesgue measure on X, with probability at least ≥ 1−O(n−10
Q ), we have

1

n
|Ball(xr, 2cε) ∩ {x1, . . . ,xn}| ≤ 2cε+ 10

√
log n

n
.

The right-hand side is bounded by O(h) if n ≥ nQ. Taking a union bound over all r ∈ S
gives the conclusion.

We conclude with the desired upper bound.

Proposition 2.6.21 (Bound on ψAP (r)). Suppose Assumption 2.2.2 holds for P with c1 < c2

and ∆n = O(( logn
nQ

)
1
2
∨α∧1

d ). Then if h ≤ C0

√
lognQ
nQ

for small enough constant C0, then we

have max
r∈S

ψAP (r) ≤ O(hn) with probability at least 1−O(n−8
Q ).

Proof. By Proposition 2.6.12, with probability at least 1−O(n−8
Q ), we have for all r ∈ S, j ∈ [n]

simultaneously that

dAP (r, j) ≥ dP (r, j)−O(n2.5
√

log n)

≥ (1−O(
1√
n

))dP (r, j).

Similarly, dAP (r, j) ≤ (1 +O( 1√
n
))dP (r, j). We conclude that ψAP (r) ≤ 2ψP (r) = O(hn) with

probability ≥ 1−O(n−8
Q ).
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2.6.2.5 Overall Error

We can bound Cd := Γ(d
2

+ 1)1/d with the elementary inequality.

Lemma 2.6.22. Let Cd := Γ(d
2

+ 1)1/d. Then Cd ≤
√
d/2.

Proof of Theorem 2.2.3. By Proposition 2.6.21 and Prop 2.6.19, we have that ES,1 ≤ O(ES,1)

with probability at least 1−O(n−8
Q ). Therefore by Proposition 2.6.17,

P
[
ES,1 + ES,2 ≤ O

(
Cβ∧1
d

(
log n

nQ

)β∧1
2d
)]
≥ 1−O(n−6

Q ).

By Lemma 2.6.22, Cd ≤
√
d/2. Finally, by Corollary 2.6.8, the Bernoulli error is bounded by

O(
√

lognQ
nQ

) with probability ≥ 1−O(n−4
Q ). Applying a union bound over the two kinds of

error and Lemma 2.6.15 gives the result.

2.6.3 Proof of Theorem 2.3.2

Recall the Gilbert-Varshamov code (Guruswami et al., 2019).

Theorem 2.6.23 (Gilbert-Varshamov). Let q ≥ 2 be a prime power. For 0 < ε < q−1
q

there

exists an ε-balanced code C ⊂ Fnq with rate Ω(ε2n).

We will use the following version of Fano’s inequality.

Theorem 2.6.24 (Generalized Fano Method, Yu (1997)). Let P be a family of probability

measures, (D, d) a pseudo-metric space, and θ : P→ D a map that extracts the parameters

of interest. For a distinguished P ∈ P, let X ∼ P be the data and θ̂ := θ̂(X) be an estimator

for θ(P ).

Let r ≥ 2 and Pr ⊂ P be a finite hypothesis class of size r. Let αr, βr > 0 be such that

for all i 6= j, and all Pi, Pj ∈ Pr,

d(θ(Pi), θ(Pj)) ≥ αr;

KL(Pi, Pj) ≤ βr.

Then

max
j∈[r]

EPj [d(θ̂(X), θ(Pj))] ≥
αr
2

(
1− βr + log 2

log r

)
.
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Definition 2.6.25 (Relative Hamming Distance). For x,y ∈ {0, 1}m, we define their relative

Hamming distance as follows:

dH(x,y) :=
1

m
|{i ∈ [m] : xi 6= yi}|.

We will need the following construction of coupled codes.

Proposition 2.6.26. Let mP ,mQ ≥ 2 and mQ divide mP . There exists a code C ⊂ {0, 1}mP

and a projection map Π : {0, 1}mP → {0, 1}mQ such that if C ′ = {Π(w) : w ∈ C} then C ′ is a
code with relative Hamming distance Ω(1). Moreover, |C| = |C ′| ≥ 20.1mQ

Throughout the proof, we will identify the community assignment function z : [n]→ [k]

of an SBM (Definition 2.3.1) with the matrix Z ∈ {0, 1}n×k where Zij = 1 if and only if

z(i) = j.

Proof. Begin with a Gilbert-Varshamov code B ⊂ {0, 1}mQ as in Theorem 3.6.19. We can

“lift” B to a code on {0, 1}mP simply by concatenation. If w ∈ B, then the corresponding

w′ ∈ C is just w′ = (w,w, . . . , w) ∈ {0, 1}mP . Let Π : {0, 1}mP → {0, 1}mQ simply select the

first mQ bits of a word. It is clear that B = {Π(w) : w ∈ C}, so we are done.

Now we are ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Let mP =
(
n
2

)
, mQ =

(
nQ
2

)
, and m = mP . Let C ⊂ {0, 1}mP be the

code and Π : {0, 1}mP → {0, 1}mQ the projection map of Prop 2.6.26. For each w ∈ C, we
construct a pair of SBMs Pw, Qw ∈ Rn×n as follows.

Each Pw, Qw is a stochastic block model with kP , kQ classes respectively. All the

Pw share the same community structure, namely the lexicographic assignment where nodes

1, 2, . . . , n
kP

are assigned to community 1, and so on. Similarly all the Qw share the same

lexicographic community structure with nodes 1, 2, . . . , n
kQ

assigned to community 1, and so

on. Therefore, there are fixed ZP ∈ {0, 1}n×kP , ZQ ∈ {0, 1}n×kQ , such that for all w ∈ C,
there exist Aw ∈ RkP×kP , Bw ∈ RkQ×kQ with

Pw = ZPAwZ
T
P ,

Qw = ZQBwZ
T
Q.
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The Aw, Bw are defined as follows. Let i, j ∈ [kP ] and i′, j′ ∈ [kQ] be such that i < j

and i′ < j′. Since mP =
(
kP
2

)
and mQ =

(
kQ
2

)
, we can identify (i, j) and (i′, j′) with indices of

[mP ], [mQ] respectively. Then for fixed δP , δQ > 0, the edge connectivity probabilities are

Aw(i, j) = Aw(j, i) :=

{
1/2 if wij = 0,

1/2 + δP if wij = 1;

Bw(i′, j′) = Bw(j′, i′) :=

{
1/2 if Π(w)i′j′ = 0,

1/2 + δQ if Π(w)i′j′ = 1.

We can set the diagonals of Aw, Bw to be 1/2 as well.

Next, let Pr be a family of r = |C| probability measures. For fixed w ∈ C, the

corresponding measure is the distribution over data (AP , AQ) ∈ {0, 1}n×n × {0, 1}nQ×nQ

sampled from (Pw, Qw[S, S]). Note that we restrict S to be a fixed subset of [n].

Next, let θ((Pw, Qw)) := Qw, and let d(θ((Pw, Qw)), θ((Pw′ , Qw′))) := 1
n
‖Qw −Qw′‖F .

We will show that for all w,w′ ∈ C with w 6= w′,

KL((Pw, Qw), (Pw′ , Qw′)) ≤ KL(Pw, Pw′) +KL(Qw, Qw′)

≤ O(n2δ2
P + n2

Qδ
2
Q)

=: β,

d((Pw, Qw), (Pw′ , Qw′)) :=
1

n
‖Qw −Qw′‖F

≥ Ω(δQ)

=: α.

For the β claim, by Proposition 4.2 of Gao et al. (2015), if δP , δQ ∈ (0, 1/4), we have

KL((Pw, Qw), (Pw′ , Qw′)) ≤ KL(Pw, Pw′) +KL(Qw, Qw′)

.
∑

i,j∈[n]

(Pw(i, j)− Pw′(i, j))2 + (Qw(i, j)−Qw′(i, j))
2.

Next, notice that Aw(i, j) 6= Aw′(i, j) if and only if wij 6= w′ij. Then for distinct

w,w′ ∈ C, we have dH(w,w′) = Ω(mP ), so

∑

i,j∈[n]

(Pw(i, j)− Pw′(i, j))2 . δ2
P

n2

k2
P

dH(w,w′)

(
kP
2

)
. δ2

Pn
2.

The bound for Qw is similar, so this verifies the β claim.
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Similarly, for the α claim, notice that

1

n
‖Qw −Qw′‖F &

1

kQ

√
δ2
QdH(Π(w),Π(w′)) ≥ δQ

kQ

√
dH(Π(w),Π(w′)).

By Prop 2.6.26, dH(Π(w),Π(w′)) = Ω(mQ) = Ω(k2
Q). Therefore α ≤ Ω(δQ).

Next, by Prop 2.6.27, the pair (Pw, Qw) satisfies Definition 2.1.3 for all w ∈ C.

Moreover, log|C| ≥ 0.1mQ by Prop 2.6.26.

Combining these results, by Theorem 3.6.20 the overall lower bound is

inf
Q̂

sup
w

1

n
‖Q̂−Qw‖F & α

(
1− β + log 2

0.1
(
kQ
2

)
)

≥ δQ

(
1− 30n2δ2

P

k2
Q

− 30n2
Qδ

2
Q

k2
Q

− o(1)

)
.

If we choose δP = 0.01(
kQ
n

) and δQ = 0.01
kQ
nQ

, then

inf
Q̂

sup
w

1

n2
‖Q̂−Qw‖2

F & δ2
Q

&
k2
Q

n2
Q

.

Note that kQ ≤ nQ ≤ n, so δP , δQ ∈ (0, 1/4) as desired.

Proposition 2.6.27. If hn = min{ 1
kP
, 1
kQ
} then for all w ∈ C, the pair (Pw, Qw) satisfies

Defn 2.1.3 at hn.

Proof. Consider h = hn and some node i ∈ [n]. Suppose that j 6= i is in the same Pw-

community as i, and that ` 6= i is in a different community. Then notice that dPw(i, `) ≥
dPw(i, j). Therefore j ∈ T Pwi (h). Moreover, since h ≤ 1

kP
and since the nodes of S ⊂ [n] are

equidistributed among the communities 1, 2, . . . , kP , it follows that all members of T Pwi (h)

must belong to the same Pw-community as i.

Therefore, since the communities of Qw are a coarsening of the communities of Pw,

j ∈ TQwi ( 1
kQ

). Since h ≤ 1
kQ

, we are done.

2.6.4 SBM Clustering Error

In this section, we prove a minimax lower bound in the clustering regime for stochastic

block models.
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Theorem 2.6.28. Let Π denote the parameter space of pairs of SBMs (P,Q) on n nodes

with kP , kQ communities respectively, such that the cluster structure of Q is a coarsening the

cluster structure of P . Then

inf
Q̂

sup
(P,Q)∈Π

E[
1

n2
‖Q̂−Qi‖2

F ] &
log kQ
nQ

.

Proof. Let Hm ∈ [0, 1]m×m be the Hadamard matrix of order m modified to replace all entries

−1 with 0. If m is not a power of two, let Hm be defined as follows. Let ` = blog2mc and let

Hm′ ∈ Rm/2×m/2 contain H2`−1 on its top left block and zeroes elsewhere. Let

Hm =

[
00T Hm′

HT
m′ 00T

]
.

Notice that at most 7
8
fraction of the entries of Hm are zero-padded, for any m. Now, let

BP = 1
2
11T + δPHkP and BQ = 1

2
11T + δQHkQ for some δP , δQ ∈ (0, 1/4) to be chosen later.

We will define two families of matrices indexed by a finite set T . For i ∈ T , there are

some Zi ∈ {0, 1}n×kP and Yi ∈ {0, 1}n×kQ to be specified later. Then

Pi = ZiBPZ
T
i ,

Qi = YiBQY
T
i .

Now, we define Yi as follows. Let Zn,kQ denote the set of balanced clusterings z : [n]→ [kQ]

such that for all i, j ∈ [kQ], |z−1({i})| = |z−1({j})|. Let Z ⊂ Zn,kQ select the z such that

for all j ≤ kQ/2, z−1(j) = {
⌊
n(j−1)
kQ

⌋
, . . . ,

⌊
nj
kQ

⌋
}. Define a distance on Z as follows. For

y, y′ ∈ Z let Y, Y ′ ∈ {0, 1}n×kQ be the corresponding cluster matrices and let d(y, y′) :=

1
n
‖Y BQY

T − Y ′BQ(Y ′)T‖F . By Theorem 2.2 of Gao et al. (2015), there exists a packing

T0 ⊂ Z with respect to d such that for all y, y′ ∈ T0, we have |{j : y′(j) 6= y(j)}| ≥ n/6.

Moreover, log|T0| ≥ 1
12
n log kQ. Set T = T0. For any yi ∈ T0, let Yi ∈ {0, 1}n×kQ be the

corresponding cluster matrix and then Qi = YiBQY
T
i .

Now, to define Zi, take a ∈ [kQ] and partition y−1
i ({a}) ⊂ [n] into kP/kQ equally

sized communities in a uniformly random way. Number these 1, . . . , kP
kQ
. In this way, we

split community 1 of yi into communities 1, . . . , kP
kQ

of zi, and so on. Define Zi to be the

matrix corresponding to zi. Notice that Zi, Yi are both balanced clusterings and that the
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clustering Yi coarsens that of Zi. Therefore (Pi, Qi) are a pair of heterogeneous symmetric

SBMs satisfying Definition 2.1.3 at h = 1/kQ.

Next, we apply Fano’s Inequality (Theorem 3.6.20). Recall log|T | ≥ 1
12
n log kQ. Now,

for i, j ∈ T distinct, Prop 4.2 of Gao et al. (2015) gives

DKL((Pi, Qi), (Pj, Qj)) ≤ DKL(Pi, Pj) +DKL(Qi, Qj) ≤ O(n2δ2
P + n2

Qδ
2
Q) =: γ1.

Finally, we can bound:

1

n2
‖Qi −Qi′‖2

F ≥
1

n2

∑

n/2<j≤n

n

kQ
‖(eyi(j) − ey′i(j))BQ‖2

≥ c0δ
2
Q =: γ2

2 ,

where c0 > 1 is some constant. This follows because there are a constant fraction of j > n/2

such that yi(j) 6= y′i(j), and any two rows of the Hadamard matrix differ on half their entries.

Now, set δ2
Q =

nQ log kQ
10n2

Q
and δ2

P =
log kQ
10n2 . Since n ≥ nQ, we conclude that

inf
Q̂

sup
i∈T

E
[

1

n2
‖Q̂−Qi‖2

F

]
& γ2

2

(
1− γ1 + log 2

(1/12)n log kQ

)

&
log kQ
nQ

.

2.6.5 Proof of Proposition 2.3.4

We first argue that Algorithm 2 perfectly recovers ZP , ZQ with high probability.

Theorem 2.6.29 (Implicit in Chen et al. (2014)). Let M = ZBZT be an (n, nmin, s)-HSBM.

Then there exists absolute constant C > 0 such that the Algorithm of Chen et al. (2014) can

recover Z, up to permutation, with zero error with probability ≥ 1−O(n−8) if

s ≥ C

( √
n

nmin

∨ log2(n)√
nmin

)
.

Proof. The algorithm of Chen et al. (2014) returns a matrix Y ∈ {0, 1}n×n such that Yij = 1

if and only if i, j are in the same community, with probability ≥ 1−O(n−8). Therefore, to

construct a clustering from Y , simply assign the cluster of node 1 to all j ∈ [n] such that
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Y1j = 1, and so on. This returns the true Z ∈ {0, 1}n×k up to permutation with probability

≥ 1−O(n−8). Note that k is correctly chosen because Y is equal to a block-diagonal matrix

of ones up to permutation, with k blocks.

Theorem 2.6.29 implies the following.

Proposition 2.6.30. Let ẐP , ẐQ be as in Algorithm 2. Let sP , sQ be the signal to noise ratios

of P,Q respectively. If sP , sQ satisfy the conditions of Theorem 2.6.29 with respect to (n, n
(P )
min

and (nQ, n
(Q)
min) respectively, then then with probability ≥ 1−O(n−8

Q ), there are permutation

matrices UP ∈ {0, 1}kP×kP , UQ ∈ {0, 1}kQ×kQ such that ẐP = ZPUP and ẐQ = ZQUQ.

Next, we want to recover the clustering of Q on all n nodes, not just the nQ nodes

that we observe in AQ. This is given by the following.

Proposition 2.6.31. 1. If hn = 1/kP and kQ ≤ kP then there exists a unique Π ∈ {0, 1}kP×kQ

such that ZPΠ contains the Q-clustering of all nodes in [n]. Let Z̃Q := ZPΠ.

2. Let Π̂ be as in Algorithm 2 and UP , UQ be as in Proposition 2.6.30. Then with

probability 1−O( 1
nQ

), ZPUP Π̂ = Z̃QUQ.

Proof. Part (1) follows immediately from the SBM structure of P,Q and definition of

Definition 2.1.3.

For Part (2), first notice that by Proposition 2.6.30, with probability at least 1−O( 1
nQ

),

Algorithm 2 returns the true clusterings ẐP = ZP ∈ {0, 1}n×kP and ẐQ = ZQ ∈ {0, 1}nQ×kQ ,
up to permutation.

Now, Algorithm 2 simply takes unions of the clusters of ZP to learn Π̂. Therefore,

let V : Rn → RnQ project onto coordinates in S. Then V ẐP Π̂ = ẐQ. Moreover, by

Proposition 2.6.30, ẐP = ZPUP and ẐQ = ZQUQ. Hence V ZPUP Π̂ = V Z̃QUQ. To remove

dependence on V , we need to argue that each Q-cluster has a reprensentatve in S.

Let E be the event that at least one Q-cluster has no representative in S. For a fixed

j ∈ [kQ], cluster j has no representative in S with probability ≤
(

1 − n
(Q)
min

nQ

)nQ
. A union

bound implies that

P[E] ≤ kQ

(
1− n

(Q)
min

nQ

)nQ
≤ kQ exp(−n(Q)

min) ≤ O(n−1
Q ).
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The last inequality holds because the condition of Theorem 2.6.29 implies that n(Q)
min ≥ Ω(

√
nQ)

and kQ ≤ nQ

n
(Q)
min

.

Finally, we proceed by conditioning on ¬E. Since ẐP = ZPUP , we know that for all

i ∈ S, the unique jP ∈ [kP ] such that row i, column jP of ZP is nonzero contains its true

P -community up to UP . Similarly since ẐQ = ZQUQ, the the unique jQ ∈ [kQ] such that row

i, column jQ of ZP is nonzero contains its true Q-community up to UQ. Therefore the nodes

in community jP in P are in community jQ in Q. So, up to permutations UP and UQ, we

have ΠjP ,jQ = 1. Since we condition on ¬E, each cluster of Q has at least one representative

in S, so each columns of Π is nonzero. We conclude that ZPUP Π̂ = Z̃QUQ with probability

at least 1−O(n−1
Q ).

We are ready to give the overall error of Proposition 2.

Proposition 2.6.32. Suppose that ẐP = ZP , Π̂ = Π in Algorithm 2. Then with probability

≥ 1−O( 1
nQ

), Algorithm 2 returns a Q̂ ∈ [0, 1]n×n such that

1

n2
‖Q̂−Q‖2

F .
k2
Q log(n

(Q)
min)

n2
Q

.

Proof. By Proposition 2.6.31, with probability≥ 1−O( 1
nQ

), we have ẐP = ZPUP , ẐQ = ZQUQ,

and Z̃QUQ = ZPUP Π̂. We proceed by conditioning on these events.

Next, let WQ ∈ RkQ×kQ be the population version of ŴQ with WQ;ii = (1TZQei)
−1.

Then since ẐQ = ZQUQ we have ŴQ = UT
QWQUQ. Hence

Q̂ = (ZPUP Π̂)(UT
QWQU

T
Q)(ZQUQ)TAQ(ZQUQ)(UT

QWQUQ)(ZPUP Π̂)T

= Z̃Q(WQZ
T
QAQZQWQ)Z̃T

Q.

Next, let zQ : [n]→ [kQ] be the ground truth clustering map given by Z̃Q ∈ {0, 1}n×kQ .
Let BQ be defined analogously to B̂Q in Algorithm 2, but using WQ, ZQ,E[AQ] in place of

ŴQ, ẐQ, AQ. Let mi := W−1
Q;ii be the the number of nodes in S belong to community i, and

let nibe the the number of nodes in [n] belonging to community i of Q. Then the error of
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Algorithm 2 is then

1

n2
‖Z̃Q(B̂Q −BQ)Z̃T

Q‖2
F =

1

n2

( ∑

i,j∈[kQ]

ninj

( ∑

r∈z−1
Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij − AQ;rs

mimj

)2)

=
1

n2

∑

i,j∈[kQ]

ninj
m2
im

2
j

( ∑

r∈z−1
Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij − AQ;rs

)2

.

Next, fix i, j ∈ [kQ] and let

Xij =
∑

r∈z−1
Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij − AQ;rs.

If we condition on the clusterings of P,Q being correct then E[BQ;ij − AQ;rs] = 0. Therefore

by Hoeffding’s inequality,

P(Xij ≥ t2) ≤ 2 exp

(
− 2t2

mimj

)
.

Setting t2 = 10 log(mimj)mimj implies that with probability at least 1−k2
Q min

i
(mi)

−20,

that the overall error is

1

n2
‖Q̂−Q‖2

F ≤
1

n2

∑

i,j∈[kQ]

10 log(mimj)ninj
mimj

.

Finally, note that there exists a constant c0 > 0 such that for all i ∈ [kQ], mi ≥ c0
√
nQ and

ni ≥ c0

√
n, by assumption. Note that each mi is a random quantity depending on the choice

of S ⊂ [n] such that E[mi] =
nQ
n
ni. Hoeffding’s inequality and a union bound over all i ∈ [kQ]

imply that that with probability at least ≥ 1 − O(n−8
Q ) that mi ≥ E[mi] − 10

√
log nQ ≥

Ω(E[mi]). We conclude that

1

n2
‖Q̂−Q‖2

F ≤ O

(
1

n2
Q

∑

i,j∈[kQ]

10 log(mimj)

)

≤ O

(
k2
Q log(n

(Q)
min)

nQ

)
.
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2.7 Additional Experiments
2.7.1 Ablation Experiments

In this section, we discuss additional experiments that quantify the dependence of our

algorithms on all relevant parameters. Our experiments also include a new baseline adapted

from the estimator of Levin et al. (2022).

Description of New Baseline. Levin et al. (2022) assumes that full edge data from

both P and Q are observed, and P = Q. Since this is not true for us, we instead compute

the following modified MLE based on their estimator from Section 3.3 of Levin et al. (2022).

Q̃ij =

{
wP

wP+wQ
AP ;ij +

wQ
wP+wQ

AQ;ij if i, j ∈ S,
AP ;ij otherwise.

Here wP , wQ are computed as in their paper, based on estimated sub-gamma parameters of

the noise for AP , AQ. Akin to their adjacency spectral embedding, which assumes known

rank of Q, we use Universal Singular Value Thresholding to obtain Q̂ from Q̃ Chatterjee

(2015b).

Oracle with p = 0.0. In addition to testing the new baseline from Levin et al. (2022),

we also test the Oracle baseline with p = 0.0. As noted in Section 2.4, this corresponds to

the non-transfer setting where all edges from the target graph Q are observed. Note that

in this case, the value of nQ does not matter because edges incident to nodes outside of S

never get flipped. The Oracle error for β-smooth graphons on d-dimensional latent variables

will therefore be O(n−
2β

2β+d ) Xu (2018), which is less than the error bound of Theorem 2.2.3.

Indeed, we will find that the Oracle our transfer algorithms in the regimes where its theoretical

upper bound is better than our theoretical upper bounds.

Next, we describe the experimental results.

Figure 2.3 tests Algorithm 1 for general latent variable models. The error (Theo-

rem 2.2.3) depends on the smoothness β of the target graph, the number of observed target

nodes nQ, and the dimension of the latent variables d.

Figure 2.4 tests Algorithm 2 for Stochastic Block Models. The error (Proposition 2.3.4)

depends on the number of communities kQ in the target graph, and the number of observed

target nodes nQ. Note that Proposition 2.3.4 also depends logarithmically on the minimum

community size of Q, but this is less significant.
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Figure 2.3: Testing parameters of Algorithm 1 (Transfer for Latent Variable Models). For
most parameter settings, our method is better than the baseline and worse than the Oracle.
Left: Testing Hölder -smoothness of fQ with n = 200, nQ = 25, d = 1. All methods improve
as β → 1. Here fP (x, y) = xα+yα

2
, fQ(x, y) = xβ+yβ

2
with α = 0.01 and β varying.

Middle: Testing number of observed target nodes nQ with n = 200, d = 1. Here fP (x, y) =
xα+yα

2
, fQ(x, y) = xβ+yβ

2
with α = 0.01, β = 0.1. Note that the oracle does not depend on nQ

because it observes the full adjacency matrix AQ ∈ {0, 1}n×n.
Right: Testing dimension d of latent positions x1, . . . ,xn ∈ [0, 1]d (i.i.d. Lebesgue) with
n = 200, nQ = 25. Here fP (x,y) = exp(−6‖x− y‖2) and fQ(x,y) = exp(−|x1 − y1|).
Points are the median MSE across 50 trials, with with [5, 95] percentile outcomes shaded.

Note that while we can plot theoretical guarantees for the mean squared error 1
n2 ||Q̂−

Q||2F of both our algorithms’ Q̂ and the oracle’s Q̂, Levin et al. (2022) only give theoretical

guarantees on the spectral norm ||Q̂ − Q||2 for their estimator Q̂. Analyzing the stronger

metric of mean-squared error would require different techniques than their paper.

2.7.2 Link Prediction Experiments

In this section, we present additional link prediction experiments on the Email-EU

and BiGG Models datasets. Unlike Section 2.4, we tune the sparsity estimate ρ̂ ∈ (0, 1)

used in the Universal Singular Value Thresholding step of the Oracle baseline. In particular,

we set ρ̂ ∈ (0, 1) to be the mean of the entries of the ground truth target matrix Q ∈ [0, 1]n×n.

Note that this value is inaccessible to other algorithms since it requires knowing all the edges
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Figure 2.4: Testing parameters of Algorithm 2 (Transfer for SBMs). For most parameter
settings, our method is better than the baseline and worse than the Oracle.
Left: n = 200, kP = 12, kQ = 6. Note that the oracle does not depend on nQ because it
observes the full adjacency matrix AQ ∈ {0, 1}n×n.
Right: n = 200, nQ = 25, kP = 2kQ.
For both experiments, the intra-community edge probabilities are 0.2, 0.9 for P,Q respectively,
while the inter-community edge probabilities are 0.1, 0.8 respectively. Points are the median
MSE across 50 trials, with with [5, 95] percentile outcomes shaded.

of Q.

Figures 2.7 and 2.8 show the performance of our Algorithms on the Email-EU dataset,

and Figures 2.5 and 2.6 for the BiGG Models dataset. As in the mean-squared error setting

(Figure 2.2), we find that Algorithm 1 outperforms Algorithm 2, and that the Oracle baseline

outperforms both for small p. Moreover, we find that the choice of source & target affects

the performance of both of our algorithms. Hence Figure 2.7 shows better performance than

Figure 2.8 for the same source but different targets, and Figure 2.5 shows better performance

than Figure 2.6 for the same target but different sources.

2.8 Experimental Details

In this section, we give further details on the experiments of Section 2.4.
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Oracle (p=0.3)

Figure 2.5: Link prediction results with the metabolic network of BiGG model iWFL1372
(Escherichia coli W) as the source and iJN1463 (Pseudomonas putida) the target. Shaded
regions denote [5, 95] percentile outcomes from 50 independent trials.
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Metabolic Network Link Prediction (Source = iPC815)
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Figure 2.6: Link prediction results with the metabolic network of BiGG model iPC815
(Yersinia pestis) as the source and iJN1463 (Pseudomonas putida) the target. Shaded regions
denote [5, 95] percentile outcomes from 50 independent trials.

Compute Environment. We run all experiments on a personal Linux machine with

378GB of CPU/RAM. The total compute time across all results in the paper was less than 2

hours.

Functions for Figure 2.1. For the top row, the source is an (n, 4)-SBM with 0.8

on the diagonal and 0.2 on the off-diagonal of B ∈ R4×4. The target is an (n, 2)-SBM with

0.9 on the diagonal and 0.1 on the off-diagonal of B ∈ R2×2.

For the second and third rows, the source function is Q(x, y) = 1+sin(π(1+3(x+y−1)))
2

(modified from Zhang et al. (2017)). The sources are P (x, y) = 1− Q(x, y) and P (x, y) =
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Figure 2.7: Link prediction results with Days 1-80 of Email-EU as the source, and Days
81-160 as target. Shaded regions denote [5, 95] percentile outcomes from 50 independent
trials.
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Figure 2.8: Link prediction results with Days 1-80 of Email-EU as the source, and Days
561-640 as target. Shaded regions denote [5, 95] percentile outcomes from 50 independent
trials.

Q(φ(x), y), where φ(x) = 0.5 + |x− 0.5| if x < 0.5, and 0.5− |x− 0.5| otherwise.

Metabolic Networks. We access metabolic models from King et al. (2016) at

http://bigg.ucsd.edu. To construct a reasonable set of shared metabolites across the

networks, we take the intersection of the node sets for the following BiGG models: iCHOv1,

IJN1463, iMM1415, iPC815, iRC1080, iSDY1059, iSFxv1172, iYL1228, iYS1720, and Recon3D.

We obtain a set of n = 251 metabolites that are present in all of the listed models.

The resulting networks are undirected, unweighted graphs on 251 nodes. We construct

the matrix AP ∈ {0, 1}n×n for species P by setting AP ;uv = 1 if and only if u and v co-occur
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in a metabolic reaction in the BiGG model for P .

Email-EU.We use the “email-EU-core-temporal” dataset at https://snap.stanford.

edu/data/email-Eu-core-temporal.html, as introduced in Paranjape et al. (2017). Note

that we do not perform any node preprocessing, so we use all n = 1005 nodes present in the

data, as opposed to Leskovec and Krevl (2014); Paranjape et al. (2017) who use only 986

nodes.

Data consist of triples (u, v, t) where u, v are anonymized individuals and t > 0 is a

timestamp. We split the data into 10 bins based on equally spaced timestamp percentiles.

For simplicity we refer to these time periods as consisting of 80 days each in Section 2.4, but

technically there are 803 days total. The network at time period ` consists of an unweighted

undirected graph with adjacency matrix entry Auv = 1 if and only if (u, v, t) or (v, t, u)

occurred in the data for an appropriate timestamp t.

Hyperparameters. We do not tune any hyperparameters. For Algorithm 1 we use

the quantile cutoff of hn =
√

lognQ
nQ

in all experiments.
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Chapter 3: Optimal Transfer Learning for Missing
Not-at-Random Matrix Completion

3.1 Introduction

We study transfer learning in the context of matrix completion, a fundamental problem

motivated by theory Candès and Recht (2009); Candès and Tao (2010) and practice Fernández-

Val et al. (2021); Einav and Cleary (2022); Gao et al. (2022).

A major body of work studies matrix completion in the Missing Completely-at-Random

(MCAR) setting Jain et al. (2013); Chatterjee (2015a); Chen et al. (2020b), where each entry

is observed i.i.d. with probability p. A more general missingness pattern, known as Missing

Not-at-Random (MNAR), considers an underlying propensity matrix pij so that the (i, j)th

entry is observed independently with probability pij Ma and Chen (2019); Bhattacharya

and Chatterjee (2022). Various MNAR models have been formulated based on missingness

structures in panel data Agarwal et al. (2023b), recommender systems Jedra et al. (2023),

and electronic health records Zhou et al. (2023).

Motivated by biological problems, we consider a challenging MNAR structure where

most rows and columns of Q̃ (a noisy version of Q) are entirely missing. Specifically, we

consider both the active sampling and passive sampling settings for Q̃. In active sampling, a

practitioner can choose rows R and columns C so that entries in R× C are observed. This

follows experimental design constraints in metabolite balancing experiments Christensen

and Nielsen (2000), marker selection for single-cell RNA sequencing Vargo and Gilbert

(2020), patient selection for companion diagnostics Huber et al. (2022), and gene expression

microarrays Hu et al. (2021).

In the passive sampling setting, the practitioner cannot choose the experiments. We

model this by sampling each row (column) with probability pRow (pCol). For example,

microarray analysis detects RNA segments corresponding to known genes by using chemical

hybridization. However, rows may be missing because of a patient sample failing to hybridize,

The content of this chapter is under review at the 42nd International Conference on Machine Learning
(ICML 2025), and can be cited as Jalan et al. (2025).
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and columns may be missing because of gene probe failure Hu et al. (2021). For an illustration,

see Figure 3.1.

This setting is inherently difficult because there are many entries (i, j) for which row

i and column j are both missing in Q̃. Clearly, even when Q is low-rank and incoherent,

estimation is impossible without side information (Proposition 3.3.1). Transfer learning is

necessary to achieve vanishing estimation error since no information about Qij is known.

Hence, we consider transfer learning in a setting where one has a noisy and masked P̃

corresponding to a source matrix P . P and Q are related by a distribution shift in their

latent singular subspaces (Definition 3.1.2), which is a common model in e.g. Genome-Wide

Association Studies McGrath et al. (2024) and Electronic Health Records Zhou et al. (2023).

Contributions. Below, we list our contributions:

(i) We obtain minimax lower bounds for entrywise estimation error for both the active

(Theorem 3.3.2) and passive sampling settings (Theorem 3.3.12).

(ii) We give a computationally efficient estimation framework for both sampling settings.

Our procedure is minimax optimal for the active setting (Theorem 3.3.6). We also

establish minimax optimality for the passive setting under incoherence assumptions

(Theorem 3.3.9).

(iii) We compare the performance of our algorithm with existing algorithms on real-world

datasets for gene expression microarrays and metabolic modeling (Section 3.4).

Setup. P,Q ∈ Rm×n are the underlying source and target matrices, related by a distri-

butional shift in their latent singular subspaces (Definition 3.1.2). We observe a noisy and

possibly masked P̃ . The observation model of Q̃ depends on which setting below we consider:

(i) Active Sampling Setting. We have a budget of Trow rows and Tcol columns. We select

rows i1, . . . , iTrow and columns j1, . . . , jTcol , possibly at random, and with repeats allowed.

Let nij ≥ 0 be the number of times both row i and column j are chosen. Then, we have

nij independent noisy observations Q̃(1)
i,j , . . . , Q̃

(nij)
i,j such that:

Q̃
(t)
i,j =

{
Qij + ζ

(t)
i,j if nij > 0,

? otherwise,
(3.1)
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Figure 3.1: The missingness matrix for gene expression levels on Day 2 of a sepsis study Parnell
et al. (2013) shows entire rows (patients) and columns (genes) as missing, due to e.g. probe-
target hybridization failure of the Illumina HT-12 gene expression microarray Hu et al. (2021).
We mark missing entries as 0 (white) and present entries as 1 (blue). This motivates our
missingness model (Eq. (3.1) and Eq. (3.2)).

For ζ(t)
i,j

iid∼ N(0, σ2
Q).

(ii) Passive Sampling Setting. Instead of row and column budgets, there are probabilities

pRow, pCol ∈ [0, 1] corresponding to the random row mask η1, . . . , ηm
i.i.d.∼ Ber(prow) and

column mask ν1, . . . , νn
iid∼ Ber(pcol). Entry (i, j) of Q is noisily observed if ηi = νj = 1,

and missing otherwise.

Q̃ij =

{
Qij + ζi,j if ηi = νj = 1,

? otherwise,
(3.2)

where ζi,j
iid∼ N(0, σ2

Q).

3.1.1 Organization of the Chapter

We give our main theoretical findings, including lower and upper bounds for the active

and passive sampling settings, in Section 3.3. Next, we compare our methods against existing

algorithms on real-world and synthetic datasets in Section 3.4. Finally, we discuss related

work in Section 3.2 and conclusions in Section 3.5.
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3.1.2 Problem Setup

Notation. We will consider P,Q ∈ Rm×n throughout. AsymptoticsO(·), o(·),Ω(·), ω(·)
are with respect to m ∧ n unless specified otherwise.

We first define matrix incoherence, which measures how concentrated the entries of

the singular vectors are.

Definition 3.1.1 (Incoherence). Let M be an m× n matrix of rank d, and write its SVD

as M = UΣV >. The left (resp. right) incoherence parameter of M is defined as µU =

m‖U‖2
2→∞/d (resp. µV = n‖V ‖2

2→∞/d). The incoherence parameter of M is defined as

µ(M) := max{µU , µV }.

We now formally define the distribution shift from P to Q, which generalizes the

latent space rotation model Xu et al. (2013); McGrath et al. (2024).

Definition 3.1.2 (Matrix Transfer Model). In the matrix transfer model, we have source

and target matrices P,Q ∈ Rm×n such that:

(i) (Low-Rank) Let P = UPΣPV
>
P for some d ≤ m ∧ n where UP ∈ Om×d, VP ∈ On×d,

and ΣP � 0 is diagonal d× d.

(ii) (Distribution shift) There exist T1, T2, R ∈ Rd×d such that Q = UPT1RT
T
2 V

T
P , and

‖Ti‖2 = O(1) for i = 1, 2.

We will define the parameter space as:

Fm,n,d =

{
(P,Q) ∈ Rm×n × Rm×n : P = UΣPV

T ,

Q = UT1RT
T
2 V

T , U ∈ Om×d, V ∈ On×d,

T1, T2, R ∈ Rd×d,ΣP � 0

}
(3.3)

Definition 3.1.2 requires that the d-dimensional features of rows and columns lie in a

shared subspace for P,Q. Consider the matrix of associations between m genetic variants

(e.g. the MC1R gene) and n phenotypes (e.g. dark hair) for different populations P,Q (e.g.

England and Spain) McGrath et al. (2024). The above model ensures that the latent feature

vector for a genotype (resp. phenotype) in Q is a linear combination of those in P .

Note that T1, T2 are not necessarily rotations and can even be singular. We set

‖Ti‖2 = O(1) to simplify theorem statements, but it is not required.
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3.2 Related Work

We review the most relevant literature here. For additional discussion, we refer to the

surveys De Handschutter et al. (2021); Jafarov (2022) for matrix completion and Zhuang

et al. (2019); Kim et al. (2022) for transfer learning.

Matrix Completion. Most matrix completion algorithms require a Missing Com-

pletely at Random (MCAR) assumption Candès and Recht (2009); Chatterjee (2015a);

Davenport et al. (2014); Zhong et al. (2019), where each Qij is observed with probability p in-

dependently of all others. The Missing Not-at-Random setting allows the masking probability

of Qij to depend on the value of Qij itself Ma and Chen (2019); Bhattacharya and Chatterjee

(2022); Jedra et al. (2023), but still assumes that entries are masked independently of one

another. If masking variables are dependent, then authors assume identifiability of the matrix

conditioned on the masking Agarwal et al. (2023b), or that entries in every row and column

are observed Simchowitz et al. (2023b). By contrast, we study one of the simplest possible

MNAR models in which entries of Q̃ are not independent and entire rows and columns can

be missing. This MNAR model is motivated by biological problems Christensen and Nielsen

(2000); Hu et al. (2021); Einav and Cleary (2022).

Transfer learning. Transfer learning has been well-studied in learning theory Ben-

David et al. (2006); Cortes et al. (2008); Crammer et al. (2008). Recent works address various

supervised learning Reeve et al. (2021); Cai and Wei (2021b); Ma et al. (2023a); Cai and Pu

(2024) and unsupervised learning settings Gu et al. (2024); Ding and Ma (2024). Statistical

works consider minimax rates of estimation, and computationally efficient estimators to

achieve such rates Tripuraneni et al. (2020); Agarwal et al. (2023a); Cai and Wei (2021a);

Ma et al. (2023a); Cody and Beling (2023); Cai and Pu (2024). In applications, transfer

learning from data-rich to data-poor domains has applications in biostatistics Kshirsagar

(2015); Datta et al. (2021), epidemiology Apostolopoulos and Bessiana (2020), computer

vision Tzeng et al. (2017a); Neyshabur et al. (2020), language models Han et al. (2021), and

other areas.

Transfer learning for matrix completion typically assumes the source P and target Q

are observed in an MCAR fashion, and are related through a rotation in latent space Xu

et al. (2013); McGrath et al. (2024); He et al. (2024). Rotational shift is a special case of our

distribution shift model (Definition 3.1.2), which allows for any linear shift in latent space.
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On the other hand, works that study transfer learning for specific classes of matrices typically

assume distributional shifts that are unique to those structures, such as in latent variable

networks Jalan et al. (2024b) or the log-linear word production model Zhou et al. (2023).

Optimal experimental design. Choosing a set of maximally informative experi-

ments is a classical problem in statistics Smith (1918); Pukelsheim (2006) with connections

to active learning Dasgupta (2011), bandits Abbasi-Yadkori et al. (2011), and reinforcement

learning Lattimore et al. (2020). Optimal designs have been studied for domain adapta-

tion Rai et al. (2010); Xie et al. (2022), misspecified regression Lattimore et al. (2020), and

linear Markov Decision Processes Jedra et al. (2023). In our active sampling setting, we

jointly query rows and columns to observe the corresponding submatrix of Q̃, rather than one

entry at a time Chakraborty et al. (2013); Ruchansky et al. (2015); Bhargava et al. (2017).

But, the optimal row queries depend on column queries (and vice versa) – so we use the

tensorization property of G-optimal designs (Proposition 3.3.4) to prove global optimality

with respect to joint row/column samplers.

3.3 Main Findings

We first show that without transfer – side information from the source data P –

completing the target matrix Q is impossible. To this end, we present a minimax lower

bound on the expected prediction error. First, we define the parameter space of matrices

with bounded incoherence:

T(d)
mn =

{
Q ∈ Rm×n : rank(Q) ≤ d,

µ(Q) ≤ O
(

log(m ∨ n)
)}
. (3.4)

Proposition 3.3.1 (Minimax Error of MNAR Matrix Completion Without Transfer). Let

m,n ≥ 1 and d ≤ m ∧ n. Let Ψ = (Q, σ, pRow, pCol) where Q ∈ T
(d)
mn, σ2 > 0, and pRow, pCol ∈

[0, 1]. Let PΨ denote the law of the random matrix Q̃ defined as in Eq. (3.2) with σQ = σ,

and denote the expectation under this law as EΨ. The minimax rate of estimation is:

inf
Q̂

sup
Q∈T(d)

mn

inf
pRow≤.99
pCol≤.99

E
Ψ

[
1

mn
‖Q− Q̂‖2

F

]
≥ Ω(dσ2).
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An immediate consequence of the above proposition is that the minimax rate for

max squared error ‖Q̂−Q‖2
max is also Ω(dσ2). We see that in both error metrics, vanishing

estimation error is impossible without transfer learning.

3.3.1 Lower Bound for Active Sampling Setting

We now give a minimax lower bound for Q estimation in the active sampling setting.

Theorem 3.3.2 (Minimax Lower Bound for Q-estimation with Active Sampling). Fix m,n

and 2 ≤ d ≤ m ∧ n. Fix σ2 > 0 and let |Ω| = Trow · Tcol.

Let PP,Q,σ2 be the distribution of (P̃ , Q̃) where P̃ := P and Q̃ := Q + G where

Gij
iid∼ N(0, σ2).

Let Q be the class of estimators which observe P̃ , and choose row and column

samples according to the budgets Trow, Tcol as in Eq. (3.1), and then return some estimator

Q̂ ∈ Rm×n. Then, there exists absolute constant C > 0 such that minimax rate of estimation

is:

inf
Q̂∈Q

sup
(P,Q)∈Fm,n,d

EPP,Q,σ2 [‖Q̂−Q‖2
max] ≥ Cd2σ2

|Ω| .

We prove Theorem 3.3.2 using a generalization of Fano’s method Verdú et al. (1994).

We construct a family of distributions indexed by d2 source/target pairs (P (s), Q(s))d
2

s=1. The

source P is the same for all s, while each pair of target matrices Q(s), Q(s′) differs in at

most 2 entries. For example, say entries (5, 6) and (8, 7) are different between Q(1) and Q(2).

Regardless of the choice of row/column samples, the average KL divergence of a pair of

targets is small. If e.g. the entries (5, 6), (8, 7) are heavily sampled, then the estimator can

distinguish Q(1), Q(2) well, but cannot distinguish Q(t), Q(t′) for all t, t′ pairs that are equal

on (5, 6) and (8, 7).

3.3.2 Estimation Framework

Next, we describe our estimation framework. Given P̃ and Q̃[R,C], where R,C can

come from either the active (Eq. (3.1)) or passive sampling (Eq. (3.2)) setting, we estimate

Q̂ via the least-squares estimator.
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Least Squares Estimator.

1. Extract features via SVD from P̃ = ÛP Σ̂P V̂
T
P .

2. Let Ω be the multiset of observed entries. Then solve

Θ̂Q := arg min
Θ∈Rd×d

∑

(i,j)∈Ω

|Q̃ij − û>i Θv̂j|2, (3.5)

where ûi := ÛT
P ei, v̂j := V̂ T

P ej.

3. Estimate Q̂:

Q̂ij = û>i Θ̂Qv̂j. (3.6)

This fully specifies Q̂ in the passive sampling setting (Eq. (3.2)). For the active

sampling setting, we must also specify how rows and columns are chosen.

Active sampling poses two main challenges. First, it is not clear how to leverage P̃ for

sampling Q̃ because samples are chosen before observing Q̃, so the distribution shift from P

to Q is unknown. Second, the best design depends on the choice of estimator and vice versa.

Surprisingly, we show that for the right choice of experimental design, the optimal

estimator is precisely the least-squares estimator Q̂ as in Eq. (3.6). We use the classical

G-optimal design Pukelsheim (2006), which has been used in reinforcement learning to achieve

minimax optimal exploration Lattimore and Szepesvári (2020b) and optimal policies for

linear Markov Decision Processes Taupin et al. (2023).

Definition 3.3.3 (ε-approximate G-optimal design). Let A ⊂ Rd be a finite set. For a

distribution π : A→ [0, 1], its G-value is defined as

g(π) := max
a∈A

[
aT
(∑

a∈A

π(a)aaT
)−1

a

]
.

For ε > 0, we say π̂ is ε-approximately G-optimal if

g(π̂) ≤ (1 + ε) inf
π
g(π).

If ε = 0, we say π̂ is simply G-optimal.
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Notice that in Eq. (3.5), the covariates are tensor products (v̂j ⊗ ûi) of column and

row features. The G-optimal design is useful because it respects the tensor structure of the

least-squares estimator. We prove this via the Kiefer-Wolfowitz Theorem Lattimore and

Szepesvári (2020b).

Proposition 3.3.4 (Tensorization of G-optimal design). Let U ∈ Rm×d1 , V ∈ Rn×d2. Let ρ

be a G-optimal design for {UTei : i ∈ [m]} and ζ be a G-optimal design for {V Tej : j ∈ [n]}.
Let π(i, j) = ρ(i)ζ(j) be a distribution on [m] × [n]. Then π is a G-optimal design on

{V Tej ⊗ UTei : i ∈ [m], j ∈ [n]}.

Consider a maximally coherent P that is nonzero at entry (3, 5) and zero elsewhere.

Then Q is also zero outside (3, 5). By the Kiefer-Wolfowitz Theorem, the G-optimal design

for rows (resp. columns) samples row 3 (resp. column 5) with probability 1. So, if P̃ is not

too noisy, then the G-optimal design samples precisely the useful rows/columns.

In light of Proposition 3.3.4, we leverage the tensorization property to sample rows

and columns as follows.

Active Sampling. Given Û , V̂ , and budget Trow, Tcol,

1. Compute ε-approximate G-optimal designs ρ̂, ζ̂ for {ÛT
P ei : i ∈ [m]} and {V̂ T

P ej : j ∈
[n]} respectively, with the Frank-Wolfe algorithm Lattimore and Szepesvári (2020b).

2. Sample i1, . . . iTrow

iid∼ ρ̂ and j1, . . . jTcol

iid∼ ζ̂.

Finally, we specify the assumption we need on the source data P̃ , called Singular

Subspace Recovery (SSR).

Assumption 3.3.5 (ε-SSR). Given P̃ ∈ (R ∪ {?})m×n, we have access to a method that

outputs estimates ÛP ∈ Om×d and V̂P ∈ On×d, such that:

inf
WU∈Od×d

‖Û − UWU‖2→∞ ≤ εSSR,

and inf
WV ∈Od×d

‖V̂ − VWV ‖2→∞ ≤ εSSR
(3.7)

for some εSSR > 0.
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This assumption holds for a number of models. For instance, recent works in both

MCAR Chen et al. (2020b) and MNAR Agarwal et al. (2023b); Jedra et al. (2023) settings

give estimation methods for P̂ with entry-wise error bounds. In Appendix 3.6.2, we prove

that these entry-wise guarantees, combined with standard theoretical assumptions such as

incoherence, imply Assumption 3.3.5.

We now give our main upper bound.

Theorem 3.3.6 (Generic error bound for active sampling). Let Q̂ be the active sampling

estimator with Trow, Tcol ≥ 20d log(m+ n). Then, for absolute constants C,C ′ > 0, and all

ε < 1
10
,

P̃
P ,Q̃

[
‖Q̂−Q‖2

max ≤ C(1 + ε)

(
d2σ2

Q log(m+ n)

|Tcol||Trow|
+ d2ε2SSR‖Q‖2

2

)]

≥ 1− C ′(m+ n)−2.

We will discuss implications of Theorem 3.3.6 in Remark 3.3.7. First, we give some

intuition. Notice that Theorem 3.3.6 (and Theorem 3.3.9) gives an error bound as a sum

of two terms, which depend on the sample size and εSSR respectively. To see why, let Ω be

the set of observed entries, either in a passive or active sampling setting. Let ûi, v̂j be the

covariates as in Eq. (3.5). The observation Q̃ij can be decomposed:

Q̃ij = Qij + (Q̃ij −Qij)

= û>i ΘQv̂j + εij︸︷︷︸
misspecification P̃

+ (Q̃ij −Qij)︸ ︷︷ ︸
noise

(3.8)

The population estimand ΘQ ∈ Rd×d, which is estimated in Eq. (3.5), is:

ΘQ := W T
U T1RT

T
2 WV ,

where T1, T2 are the distribution shift matrices as in Definition 3.1.2, and WU ,WV ∈
Od×d are some rotations. The misspecification error is due to the estimation error of the

singular subspaces of P and depends on εSSR as follows:

εij := eTi (Û − UWU)ΘQV̂ ej

+ eTi ÛΘQ(V̂ − VWV )ej

+ eTi (Û − UWU)ΘQ(V̂ − VWV )ej
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Therefore ε2ij = O(ε2SSR‖Q‖2
2) for all i, j.1 Notice the misspecification error is independent of

the estimator Θ̂Q, so it will not depend on sample size. This explains the appearance of the

two summands in our upper bounds. The first term depends on estimation error ΘQ − Θ̂Q,

which is unique to the sampling method. The second depends on misspecification, which is

common to both.

Remark 3.3.7 (Minimax Optimality for MNAR and MCAR Source Data). The rate of

Theorem 3.3.6 is minimax-optimal in the usual transfer learning regime when target data is

noisy (σQ large) and limited (|Ω| := |Trow||Tcol| small).

Suppose P is rank d, µ-incoherent, with singular values σ1 ≥ · · · ≥ σd, condition

number κ and m = n. For the MNAR P̃ setting, suppose each P̃ij has i.i.d. additive noise

N(0, σ2
P ) with sampling sparsity factor n−β for β ∈ [0, 1] and σP = O(1). By Jedra et al.

(2023), Q̂ is minimax-optimal if

4µ3d3κ2‖Q‖2
2

n1+ 2−β
d

.
σ2
Q

|Ω| ,

where . ignores log(m+ n)O(1) factors. For the MCAR P̃ setting, suppose P̃ has additive

noise N(0, σ2
P ) and observed entries i.i.d. with probability p & κ4µ2d2

n
, with σP

√
n
p
. σd(P )√

κ4µd
.

Letting |Ω| = n2pRowpCol, by Chen et al. (2020b), Q̂ is minimax-optimal if

µ6d4‖Q‖2
2

n2
.
σ2
Q

|Ω| .

While the results of Jedra et al. (2023); Chen et al. (2020b) used in Remark 3.3.7 require

incoherence, recent work also gives guarantees on εSSR without incoherence assumptions,

although in limited settings.

Remark 3.3.8 (Incoherence-free minimax optimality). Let P ∈ Rn×n be rank-1 and Hermi-

tian, and P̃ = P +W where W is Hermitian with i.i.d. N(0, σ2
P ) noise on the upper triangle.

Under the assumptions of Yan and Levin (2024), for constant C > 0, Q̂ is minimax optimal if

Cσ2
P (log n)O(1)‖Q‖2

2

‖P‖2
2

≤ σ2
Q

|Ω| .

Taking |Ω| = O(log n) since d = 1, and ‖Q‖2 = O(‖P‖2), we require

Cσ2
P (log n)O(1) ≤ σ2

Q.

1In fact ε2ij = O(ε2SSR‖R‖22), but we report bounds with the weaker O(ε2SSR‖Q‖22) for ease of reading.
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3.3.3 Passive Sampling

We next give the estimation error for the passive sampling setting. The rate almost

exactly matches Theorem 3.3.6, but we pay an extra factor due to incoherence. This is

because unlike the active sampling setting, if `2 mass of the features is highly concentrated

in a few rows and columns, then the passive sample will simply miss these with constant

probability. To give a high probability guarantee, we require that features cannot be too

highly concentrated.

Theorem 3.3.9 (Generic Error Bound for Q̂). Let Q̂ be as in Eq. (3.6) and C > 0 an

absolute constant. Suppose P has left/right incoherence µU , µV respectively, and pRow, pCol
are such that pRowm

Cd logm
≥ µU +

ε2SSRm

d
, pColn
Cd logn

≥ µV +
ε2SSRn

d
. Let µ = µUµV . Then,

P
[
‖Q̂−Q‖2

max ≤ Cµ

(
d2σ2

Q log(m+ n)

pRowpColmn
+ d2ε2SSR‖Q‖2

2

)]

≥ 1−O((m ∧ n)−2).

If P is coherent, the sample complexity |Ω| ≈ pRowpColmn needed to achieve vanishing

estimation error in Theorem 3.3.9 may be large. By contrast, our active sampling with

G-optimal design requires only |Ω| & d2σ2
Q (Theorem 3.3.6). This shows the advantage of

active sampling, which can query the most informative rows/columns when P is coherent.

3.3.4 Lower Bound for Passive Sampling

We give a lower bound for the passive sampling setting in terms of a fixed, arbitrary

mask. To exclude degenerate cases such as all entries being observed, we require the following

definition.

Definition 3.3.10 (Nondegeneracy). Let p > 0 and η1, . . . , ηm
iid∼ Ber(p). Let D ∈ {0, 1}m×m

be diagonal with Dii = ηi. We say (ηi)
m
i=1 is p-nondegenerate for U ∈ On×d if |‖DU‖2−√p| ≤

√
p

10
.

The Matrix Bernstein inequality Chen et al. (2021) implies that masks are nondegen-

erate with high probability.
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Proposition 3.3.11. Under the conditions of Theorem 3.3.9, the event that both (ηi)
m
i=1 is

pRow-nondegenerate for ÛP and that (νj)
n
j=1 is pCol-nondegenerate for V̂P holds with probability

≥ 1− 2(m ∧ n)−10.

We can now state our lower bound, proved via Fano’s method.

Theorem 3.3.12 (Minimax Lower Bound for Passive Sampling). Let Fm,n,d be the parameter

space of Theorem 3.3.2. Let

Gm,n,d :=

{
(P,Q) ∈ Fm,n,d : P,Q are O(1)− incoherent

}

Suppose (ηi)
m
i=1, (νj)

n
j=1 are nondegenerate with respect to U, V respectively. Let PQ,σ2,pRow,pCol

be the law of the random matrix Q̃ generated as in Eq. (3.2) with σ = σQ.

There exists absolute constant C > 0 such that minimax rate of estimation is:

inf
Q̂

sup
(P,Q)∈Gm,n,d

E
P(Q,σ2,pRow,pCol)

[
1

mn
‖Q̂−Q‖2

F

∣∣∣∣(ηi)mi=1, (νj)
n
j=1

]
≥ Cd2σ2

Q

pRowpColmn

We immediately obtain the same lower bound for max squared error.

We see that our error rate for passive sampling in Theorem 3.3.9 is minimax-optimal

when µ = O(1), modulo bounds on εSSR as in Remark 3.3.7.

Unlike the lower bound for max squared error in active sampling (Theorem 3.3.2),

Theorem 3.3.12 gives a lower bound for the mean-squared error, which is strictly stronger.

An interesting question is whether Theorem 3.3.12 can be generalized to incoherence greater

than a constant. We leave this for future work.

3.4 Experiments

In this section, we compare both our active and passive sampling estimators against

existing methods on real-world and simulated datasets.

Experimental setup. We compare against two baselines from the matrix completion

literature. First, we use the MNAR matrix completion method of Bhattacharya and Chatterjee

(2022). We tune the method by passing in the true rank of Q as well as the rank of the

mask matrix. Second, we use the transfer learning method of Levin et al. (2022). This
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Table 3.1: Summary of real-world datasets. The 2 → ∞ norms are for UP , VP , UQ, VQ
respectively. Notice these are within [0, 1] always, and 2→∞ norm of 1 implies maximal
coherence.

Dataset Shape Rank 2→∞ Norms

Gene Expr. 31 × 300 4 0.55, 0.30, 0.64, 0.38
Metabolic 251 × 251 8 0.99, 0.99, 0.99, 0.99

method is designed for matrix completion, but in a missingness structure different from our

MNAR setting. For shorthand, we will refer to these as BC22 and LLL22 respectively. See

Section 3.7 for precise details of our implementations.

The input to each of these, as well as our passive sampling method, is the pair P̃ , Q̃.

The method of Bhattacharya and Chatterjee (2022) requires input matrices to have entries in

[−1, 1] so we normalize all P̃ , Q̃ by their maximum entry in absolute value, for all methods. We

also compute the active sampling estimator by fixing the budgets Trow = m·pRow, Tcol = n·pCol
throughout.

3.4.1 Real World Experiments

In this section we study real-world datasets on gene expression microarrays in a whole-

blood sepsis study Parnell et al. (2013), and weighted metabolic networks of gram-negative

bacteria King et al. (2016). Table 3.1 summarizes the datasets, and Appendix 3.7 gives more

details on our data preparation.

Patient Gene Expression Matrices. The matrices P,Q represent the gene ex-

pression for patients in a sepsis study Parnell et al. (2013). Here P,Q ∈ R31×300 where Pij
measures the expression level of gene j in patient i on day 1 of the study, and Q corresponds

to day 2 of the study.

Figure 3.2 displays the maximum squared error for a range of masking probabilities

on Q̃. We see that both active and passive sampling perform well even at small sample

sizes, while the transfer baseline method Levin et al. (2022) achieves a worse but nontrivial

maximum error.

Notably, active sampling is no better than passive sampling here. This makes sense

because P,Q are relatively incoherent (Table 3.1), so our theoretical guarantees are the same.
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In fact, active sampling displays higher variation in error, due to the variability in

random sampling from the G-optimal design. It is known that the G-optimal design for any

A ⊂ Rd has support size O(d2) Lattimore and Szepesvári (2020a), so the sampled set of rows

and columns will vary somewhat from one experiment to the next.

Figure 3.2: Max-squared error of Q̂−Q. Here, Q̃ has pRow = pCol varying along the x-axis,
which displays p2

Row. We set σQ = 0.1, and P is fully observed. For each method, we show
the median of the errors across 50 independent runs, as well as the [10, 90] percentile.

Weighted Metabolic Network Adjacency Matrices. We collect weighted metabolic

networks from the BiGG Genome Scale Metabolic Models repository King et al. (2016),

consistent with recent work on transfer learning for network estimation Jalan et al. (2024b).

Specifically, P,Q ∈ R251×251 where Pij ≥ 0 counts the number of co-occurrences of metabo-

lites i and j in a reaction for organism P . Qij represents the same quantity in a different

organism Q. We use the gram-negative bacteria E. coli W and P. putida for P,Q respectively.

Unlike Jalan et al. (2024b), we do not need to truncate the adjacency matrices to {0, 1},
allowing us to handle edge weights. This makes a difference, because without truncation the

edge weights distribution is highly skewed for both P,Q (see Section 3.7).

Figure 3.3 shows max squared error for a range of masking probabilities on Q̃. We

see that active sampling does well, while passive sampling is very poor (note however, that

passive sampling does relatively well for mean-squared error - Figure 3.12). This is because

P,Q are almost maximally coherent (Table 3.1), so the assumptions of our guarantee for

passive sampling (Theorem 3.3.9) do not hold. By contrast, active sampling performs well

even in this highly coherent setting.
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Figure 3.3: Max-squared error of Q̂−Q, with the same experimental parameters as Figure 3.2.

3.4.2 Simulations

In this section, we further probe the effects of incoherence by testing on two highly

coherent synthetic datasets (described below). Table 3.2 displays our results, with pRow =

pCol = 0.1, σQ = 0.1, and P fully observed. Note that 0.1 ≈ 2d logn
n

here, so pRow, pCol are near

the theoretical limit of our guarantees even for incoherent matrices.

Each table entry shows µ̂± 2σ̂ for mean-squared error across 50 independent trials.

We find that for a stylized example of maximally coherent P,Q, active sampling is much

better than all other methods. However, for less stylized P,Q that are still not incoherent,

active and passive sampling are comparable, and outperform both baselines.

Stylized Coherent Model. For n = 200, d = 5 we generate UP , VP ∈ {0, 1}n×d via
(UP )ii = 1, (VP )(n−i),i = 1.0 and the other entries zero. We sample the diagonal entries of

ΣP ,ΣQ ∈ Rd×d iid uniformly at random from [0.5, 1]. Then P = UPΣPV
T
P and Q = UPΣQV

T
P .

We call this class “Coherent.”

Matrix Partition Model. For a less stylized class, let m = 300, n = 200, d =

5, a = 0.1, b = 0.8. We generate partitions UP ∈ {0, 1}m×d, VP ∈ {0, 1}n×d where each row

is uniformly at random from {e1, . . . , ed}. Then, BP ∈ [0, 1]d×d is generated by sampling

C ∈ [0, 1]d×d with Cij
iid∼ Unif([0, b]) and (BP )ij = Cij+1i=ja. Finally, we sample permutations

Π1,Π2 ∈ {0, 1}d×d uniformly at random from all such permutations. Then, P = UPBPV
T
P

and Q = UPΠ1BPΠT
2 V

T
P . We call this class “Matrix Partition Model” in analogy with the

Planted Partition Model Abbe (2017). Spectral arguments show that such matrices are
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somewhat coherent Lee et al. (2014a), although not maximally so.

Table 3.2: Comparison of the errors of different approaches on synthetic data.

Coherent Partition

Passive (Ours) 0.084 ± 0.039 ×10−3 0.040 ± 0.090
Active (Ours) 0.009 ± 0.015 ×10−3 0.046 ± 0.074
LLL22 0.061 ± 0.037 ×10−3 0.134 ± 0.011
BC22 0.789 ± 0.644 ×10−3 0.305 ± 0.002

Figure 3.4: Ablation study for the effect of additive target noise in the Matrix Partition
Model. For each method, we display the median max-squared error across 10 independent
runs, as well as the [10, 90] percentile.

3.4.3 Ablation Studies

Our main focus is to understand how sample budgets Trow, Tcol, or probabilities

pRow, pCol affects the estimation error for transfer learning. We also perform ablation studies

to test the effect of other model parameters, such as rank, dimension, noise variance, etc.

Figure 3.4 shows the effect of target noise variance on maximum error in the Matrix Partition

Model with m = 300, n = 200, d = 5, a = 0.1, b = 0.8, pRow = 0.5, pCol = 0.5. We defer our

additional ablation studies to Section 3.7.
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3.5 Conclusion and Future Work

We study transfer learning for a challenging MNAR model of matrix completion.

We obtain minimax lower bounds for entrywise estimation of Q in both the active (The-

orem 3.3.2) and passive sampling settings (Theorem 3.3.12). We give a computationally

efficient minimax-optimal estimator that uses tensorization of G-optimal designs in the active

setting (Theorem 3.3.6). Further, in the passive setting, we give a rate-optimal estimator

under incoherence assumptions (Theorem 3.3.9). Finally, we experimentally validate our

findings on data from gene expression micoarrays and metabolic modeling.

Future work could consider even more difficult missingness structures, such as when

the masks (ηi)
m
i=1, (νj)

n
j=1 are dependent. If the mask can be partitioned into subsets whose

mutual dependencies are small, an Efron-Stein argument Paulin et al. (2016) may work. Is

bounded dependence necessary? Moreover, one can consider other kinds of side information,

such as gene-level features in Genome-Wide Association Studies McGrath et al. (2024).

Finally, there can be other interesting nonlinear models for transfer between source and target

matrices.

3.6 Proofs and Additional Results
3.6.1 Preliminaries

We will repeatedly make use of the vectorization operator.

Definition 3.6.1 (Vectorization). For X ∈ Rn×d, the vectorization vec(X) ∈ Rnd is the

vector whose first n entries correspond to the first column of X, and next n entries correspond

to the second column of X, and so on.

We can vectorize matrix products as follows.

Lemma 3.6.2 (Horn and Johnson (2012)). Let A,B,X be matrices of shapes such that

AXB is well-defined. Then:

vec(AXB) = (BT ⊗ A)vec(X).

3.6.2 From Entrywise Guarantees to SSR

We prove that Assumption 3.3.5 follows from entrywise estimation guarantees on the

source.
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Proposition 3.6.3. Let P an m×n matrix of rank r. Let ε > 0, and P̂ be a rank-r estimate

of P , satisfying

‖P̂ − P‖max ≤ ε‖P‖max. (3.9)

Consider the SVDs P = UΣV >, and P̂ = ÛΣ̂V̂ >. Then, it holds that

min
W∈Or×r

‖U − ÛR‖2→∞

≤ (2
√
n+ (2 +

√
2)
√
mn‖UU>‖2→∞)‖P − P̂‖max

σr(P )

min
W∈Or×r

‖V − V̂ W‖2→∞ ≤

≤ (2
√
m+ (2 +

√
2)
√
mn‖V V >‖2→∞)‖P − P̂‖max

σr(P )

provided that
√
mnε‖P‖max ≤ σr(P )

2
.

Below, we give a result showing that entry-wise guarantees imply subspace recovery

in the two-to-infinity guarantee.

Proof. We will only prove the result concerning the left subspaces U and Û . Our first step is

to relate the errors ÛR−U and UU>Û −U . We will introduce in our computations the sign

matrix2 of U>Û , namely sgn(U>Û) which is a rotation matrix. We have

min
W∈Or×r

‖UW − Û‖2→∞ ≤ ‖Usgn(U>Û)− Û‖2→∞

≤ ‖U(U>Û)− ÛU‖2→∞ + ‖U‖2→∞‖U>Û − sgn(U>Û)‖op.

Moreover, we also know (e.g., see Lemma 4.15 Chen et al. (2021)) that

‖Û>U − sgn(Û>U)‖op ≤ ‖ sin(Θ)‖op,

and using the Davis-Kahan Theorem (Chen et al., 2021) we obtain

‖Û>U − sgn(Û>U)‖op ≤ ‖ sin(Θ)‖op ≤
√

2‖M − M̂‖op
σr(M)

.

2The sign matrix of an n× n matrix Z with SVD UZΣZV
>
Z is given by sgn(Z) = UZV

>
Z ∈ On×n .
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Thus, we conclude that

min
W∈Or×r

‖UW − Û‖2→∞ ≤ ‖U(U>Û)− ÛU‖2→∞ +

√
2‖U‖2→∞‖M − M̂‖op

σr(M)
. (3.10)

Next, we show that minW∈Or×r ‖UW − Û‖2→∞ can be well controlled by the error

M − M̂ . On the one hand, we have triangular inequality, and noting that UU>M = M and

Û Û>M̂ = M̂ that

‖(UU> − Û Û>)M̂‖2→∞ ≤ ‖UU>M − Û Û>M̂‖2→∞ + ‖UU>(M − M̂)‖2→∞

≤ ‖M − M̂‖2→∞ + ‖UU>‖2→∞‖M − M̂‖op

On the other hand, we have

‖(UU> − Û Û>)M̂‖2→∞ = ‖(U(U>Û)− Û)Σ̂V̂ >‖2→∞

= ‖(U(U>Û)− Û)Σ̂‖2→∞

≥ ‖U(U>Û)− Û‖2→∞σr(M̂)

≥ ‖U(U>Û)− Û‖2→∞σr(M)− ‖U(U>Û)− Û‖2→∞‖M − M̂‖op,

where in the last inequality we used Weyl’s inequality: |σr(M)− σr(M̂)| ≤ ‖M − M̂‖op. We

combine the above inequalities to obtain

‖U(U>Û)− Û‖2→∞ ≤
‖M − M̂‖2→∞ + ‖UU>‖2→∞‖M − M̂‖op + ‖U(U>Û)− Û‖2→∞‖M̂ −M‖op

σr(M)

If the following condition holds

‖M − M̂‖op ≤
√
mn‖M − M̂‖max ≤

σr(M)

2
,

then

‖U(U>Û)− Û‖2→∞ ≤
‖M − M̂‖2→∞ + ‖UU>‖2→∞‖M − M̂‖op

σr(M)
+

1

2
‖U(U>Û)− Û‖2→∞

which in turn gives

‖U(U>Û)− Û‖2→∞ ≤
2‖M − M̂‖2→∞ + 2‖UU>‖2→∞‖M − M̂‖op

σr(M)
(3.11)

In summary we conclude that

min
W∈Or×r

‖UW − Û‖2→∞ ≤
2‖M − M̂‖2→∞ + (2 +

√
2)‖UU>‖2→∞‖M − M̂‖op

σr(M)
(3.12)
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Using the inequalities

‖M − M̂‖2→∞ ≤
√
n‖M − M̂‖max and ‖M − M̂‖op ≤

√
mn‖M − M̂‖max,

we can express our bounds as

min
W∈Or×r

‖UW − Û‖2→∞ ≤
(2
√
n+ (2 +

√
2)
√
mn‖UU>‖2→∞)‖M − M̂‖max

σr(M)
. (3.13)

A simple calculation also gives the following.

Proposition 3.6.4. Suppose Û ∈ Om×r satisfies Assumption 3.3.5 with bound εSSR, and the

population incoherence is µU :=
m‖U‖22→∞

d
. Then Û is γ-incoherent for γ ≤ 2µU +

2ε2SSRm

d
.

3.6.3 Proof of Proposition 3.3.1

We require the following special case of Hoeffding’s inequality.

Lemma 3.6.5. Let X1, . . . , Xn
iid∼ Bernoulli(p). Then:

P
[
| 1
n

∑

i

Xi − p| ≥
√

log n

n

]
≤ 2n−2

The following concentration is standard.

Lemma 3.6.6. Let x ∼ Sn−1. Then:

P[‖x‖∞ ≥ C

√
log n

n
] ≤ 1−O(n−1/2)

Proof. By Hoeffding’s inequality,

P
[
|
∑

i

Xi − np| ≥ t

]
≤ 2 exp

(
− 2t2

n

)

Let t =
√
n log n. The conclusion follows.

Finally, we require the following version of the Hanson-Wright inequality.
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Theorem 3.6.7 (Rudelson and Vershynin (2013) Theorem 2.1). Let A ∈ Rm×n be fixed and

x ∈ Rn a random vector with i.i.d. mean zero entries with variance 1 and ‖xi‖ψ2 ≤ K for

all i. Then there exists constant c > 0 such that for any t > 0,

P
[
|‖Ax‖2 − ‖A‖F | > t

]
≤ 2 exp

(
− ct2

K4‖A‖2

)

We are ready to state our lower bound.

Proof of Proposition 3.3.1. Let u1, . . . ,ud ∈ Rm be generated with iid N(0, 1
m

) entries and

v1, . . . ,vd ∈ Rm be generated with iid N(0, 1
n
) entries. Let Q =

∑d
i=1 uiv

T
i .

We first analyze the incoherence of Q. We analyze the left-incoherence. Fix i ∈ [m]

and let y = (UTei). Then we apply Theorem 3.6.7 with x =
√
my and A = V , to obtain that

‖Ax‖ = ‖√mV UTei‖ ≤ ‖V ‖F + C ′K2‖V ‖2

√
log n with probability ≥ 1− n−10 for absolute

constant C ′ > 0. Since x has iid N(0, 1) entries, the Orlicz norm constant is at most K ≤ 2.

Taking a union bound over all i, it follows that:

P
[
‖√mV UT‖2→∞ ≤ ‖V ‖F + 4C ′‖V ‖2

√
log n

]
≥ 1−O(n−9)

It follows that the left incoherence is at most O(log n) with high probability. An identical

application of Theorem 3.6.7 with A = U implies that the right-incoherence is at most

O(logm). Let E′ be the event that Q is O(log(n ∨m)) incoherent. Let Q be the random

matrix generated as above, conditioned on E′. Note that P[E′] ≥ 1− o(1).

Next, let I ⊂ [m], J ⊂ [n] be the rows and columns of Q that are seen in Q̃. Then

by Lemma 3.6.5, |I| ≤ 0.99m +
√
m logmand |J | ≤ 0.99n +

√
n log n with probability

≥ 1− 2n−2 − 2m−2. Let E be the event that the bounds on I and J both hold.

Consider k ∈ [m] \ I, ` ∈ [n] \ J . None of the entries of Q in the kth row or `th column

are seen. Therefore, since m− |I| ≥ Ω(m) and n− |J | ≥ Ω(n), and since P[E′] ≥ 1− o(1),

there exists a constant C such that for all i ∈ [d], V ar(ui;kvi;`|Q̃) ≥ C. Therefore, since

u1, . . . ,ud,v1, . . . ,vd are independent, for any Q̂, we have:

E[(Q̂k` −Qk`)
2|Q̃] ≥ V ar(Qk`|Q̃)

≥
d∑

i=1

V ar(ui;kvi;`|Q̃)

≥ Cd
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Therefore, if we condition on E, then |[m] \ I| ≥ Ω(m) and |[n] \ J | ≥ Ω(n), so E[ 1
mn
‖Q̂ −

Q‖2
F |Q̃] ≥ cd for a constant c > 0. Since 1− 2n−2 − 2m−2 ≥ 1

2
, we conclude that:

E[
1

mn
‖Q̂−Q‖2

F |Q̃] ≥ 1

2
E[

1

mn
‖Q̂−Q‖2

F |Q̃,E]

≥ cd

2

3.6.4 Proof of Theorem 3.3.2

We require a version of Fano’s theorem given in Theorem 7 of Verdú et al. (1994).

Theorem 3.6.8 (Generalized Fano). Let P be a family of probability measures, (D, d) a

metric space, and θ : P→ D a map that extracts the parameters of interest. Let H ⊂ P be a

finite subset of size M . Suppose α > 0 is such that for any distinct Hi, Hj ∈ H,

d(θ(Hi), θ(Hj)) ≥ α.

And, suppose that β > 0 is such that:

log 2 +
1

M2

M∑

i=1

M∑

j=1

KL(Hi, Hj) ≤ β logM.

Then,

inf
θ̂

sup
P∈P

E[d(θ(P ), θ̂)] ≥ α(1− β).

We also require a standard expression for the KL divergence of a pair of multivariate

Gaussians.

Lemma 3.6.9. Let µ,µ′ ∈ Rd be distinct and Σ � 0. The KL divergence of two multivariate

Gaussians sharing the same covariance is given as:

KL(N(µ,Σ),N(µ′,Σ)) = (µ− µ′)TΣ−1(µ− µ′)
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We now prove our lower bound.

Proof of Theorem 3.3.2. Let U ∈ Rm×d, V ∈ Rn×d be such that Uii = 1 and Vii = 1 for

i ∈ [d], and all other entries are zero. Let P = UV T . We construct a hypothesis space

H = {(P (ij), Q(ij) : i, j ∈ [d]} of size d2 where P (ij), Q(ij) ∈ Rm×n as follows. For all members

ij, we set P (ij) = P . Next, let R(ij) = γeie
T
j for γ > 0 to be specified later. We set

Q(ij) = UR(ij)V T .

First, notice for any (r, s) 6= (i, j) that:

‖Q(ij) −Q(rs)‖2
max = γ2

Next, consider the KL divergences between a pair of hypotheses. Let (P̃ (ij), Q̃(ij)) be

the distribution of the data under hypothesis (P (ij), Q(ij)). Since P̃ (ij) = P (ij) = P for all

(i, j), we must simply bound KL(Q̃(ij), Q̃(rs)) for each pair (ij, rs). Now, let π(ij)
R , π

(ij)
C be

the row and column sampling distributions (possibly deterministic) respectively, based on

the source data P̃ (ij). Since P̃ (ij) = P (ij) = P for all (i, j) we know that there is a pair of

distributions πR, πC such that π(ij)
R = πR, π

(ij)
C = πC for all (i, j). In other words the sampling

cannot depend on the hypothesis index (i, j).

Next, we analyze KL(Q̃(ij), Q̃(rs)). Each distribution depends on the randomness of

πR, πC as well as the Gaussian noise. Let R,C be the random multisets of rows and columns

generated by πR, πC according to the prescribed row/column budgets. By the chain rule for

KL divergences (Theorem 2.15 of Polyanskiy and Wu (2024)), we have:

KL(Q̃(ij), Q̃(rs)) = E
R,C

[
KL

((
Q̃(ij)|R,C),

(
Q̃(rs)|R,C)

)]

Note that the marginal term involving π
(ij)
R , π

(ij)
C versus π(rs)

R , π
(rs)
C is zero, because the

distributions are equal for all ij, rs.

Next, for u ∈ [m], v ∈ [n], let nuv(R,C) be the number of times that (u, v) is sampled

in R,C. Notice that ER,C [nuv(R,C)] = |Ω|πR(u)πC(v). So, by Lemma 3.6.9,

E
R,C

[
KL

((
Q̃(ij)|R,C),

(
Q̃(rs)|R,C)

)]
= E

R,C

[ ∑

u∈[m],v∈[n]

nuv(R,C)

σ2
Q

(Q(ij)
uv −Q(rs)

uv )2

]

= E
R,C

[
γ2

σ2
Q

(nij(R,C) + nrs(R,C))

]

=
γ2|Ω|
σ2
Q

(πR(i)πC(j) + πR(r)πC(s))
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Hence, the average KL divergence for all pairs is:

1

d4

∑

(i,j)∈[d]2

∑

(r,s)∈[d]2

KL(Q̃(ij), Q̃(rs)) =
γ2|Ω|
σ2
Qd

4

∑

(i,j)∈[d]2

∑

(r,s)∈[d]2

(πR(i)πC(j) + πR(r)πC(s))

≤ γ2|Ω|
σ2
Qd

4

∑

(i,j)∈[d]2

(1 + d2πR(i)πC(j))

≤ γ2|Ω|
σ2
Qd

4
· 2d2

=
2γ2|Ω|
σ2
Qd

2

Let γ2 = 1
10

σ2
Qd

2

|Ω| . By Theorem 3.6.8, we conclude that for d ≥ 2, the minimax rate of

estimation is at least 1
10
γ2 = 1

100

σ2
Qd

2

|Ω|

3.6.5 Proof of Proposition 3.3.4

We use the classical characterization of G-optimal designs due to Kiefer and Wolfowitz.

Theorem 3.6.10 (Kiefer and Wolfowitz (1960)). Let π be a distribution on a finite space

A ⊂ Rd. The following are equivalent:

• π is G-optimal.

• g(π) = d.

• For V (π) :=
∑

a∈A π(a)aaT , π maximizes log detV (π).

We now prove the tensorization of G-optimal designs.

Proposition 3.6.11 (Restatement of Proposition 3.3.4). Let ρ be a G-optimal design for

{ÛT
P ei : i ∈ [m]} and ζ be a G-optimal design for {V̂ T

P ej : j ∈ [n]}. Let π(i, j) = ρ(i)ζ(j) be

a distribution on [m]× [n]. Then π is a G-optimal design on {̂̂V T
P ej ⊗ UT

P ei : i ∈ [m]}.
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Proof. Let i ∈ [m], j ∈ [n]. Then by the Kiefer-Wolfowitz theorem,

g(π) = max
i,j

[
(V̂ T

P ej ⊗ ÛT
P ei)

T

(∑

i,j

π(i, j)(V̂ T
P ej ⊗ ÛT

P ei)(V̂
T
P ej ⊗ ÛT

P ei)
T

)−1

(V̂ T
P ej ⊗ ÛT

P ei)

]

= max
i,j

[
(V̂ T

P ej ⊗ ÛT
P ei)

T

((∑

j

ζ(j)V̂ T
P eje

T
j V̂

T
P

)
⊗
(∑

i

ρ(i)ÛT
P eie

T
i Û

T
P

))−1

(V̂ T
P ej ⊗ ÛT

P ei)

]

= max
i,j

[
(V̂ T

P ej ⊗ ÛT
P ei)

T

[(∑

j

ζ(j)V̂ T
P eje

T
j V̂

T
P

)−1

⊗
(∑

i

ρ(i)ÛT
P eie

T
i Û

T
P

)−1]
(V̂ T

P ej ⊗ ÛT
P ei)

T

]

= max
i,j

[
(V̂ T

P ej)
T

(∑

j

ζ(j)V̂ T
P eje

T
j V̂

T
P

)−1

(V̂ T
P ej)(Û

T
P ei)

T

(∑

i

ρ(i)ÛT
P eie

T
i Û

T
P

)−1

(ÛT
P ei)

]

= g(ρ)g(ζ)

= d2

Where the last step follows from G-optimality of ρ and ζ. By Theorem 3.6.10, π is G-

optimal.

3.6.6 Proof of Theorem 3.3.6

We first prove a useful error decomposition.

Proposition 3.6.12 (Decomposition). Let ÛP ∈ Om×d, V̂PO
n×d be the estimates of the

left/right singular vectors of P .Then there exist matrices WU ,WV ∈ Od such that if T1, T2 are

the distribution shift matrices as in Definition 3.1.2, and if M = (W T
U T1)R(T T2 WV ), then:

Q = ÛP (W T
U T1)R(T T2 WV )V̂ T

P + E

Where the E-error depends on the estimator error of P̂ .

E := (ÛP − UPWU)MV̂ T
P + ÛPM(V̂P − VPWV )T + (ÛP − UPWU)M(V̂P − VPWV )T

Proof. Let T1, T2 ∈ Rd×d be the distributional shift matrices from Definition 3.1.2 such that

UQ = UPT1, VQ = VPT2.

Let WU be the solution to the Procrustes problem:

WU := arg inf
W∈Od×d

‖UPW − ÛP‖2→∞
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And similarly,

WV := arg inf
W∈Od×d

‖VPW − V̂P‖2→∞

Next, let Z = T1RT
T
2 and M = W T

U ZWV . Further, let ∆U = ÛP − ÛPWU and

∆V = V̂P − V̂PWV . Then, we can write Q as:

Q = UPT1R(VPT2)T

= UPZV
T
P

= UPWUW
T
U ZWVW

T
V V

T
P

= (ÛP + ∆U)W T
U ZWV (V̂P + ∆V )T

= ÛPMV̂ T
P + E

Where E contains the cross-terms:

E = ∆UMV̂ T
P + ÛPM∆T

V + ∆UM∆T
V

So we are done.

We require a strong form of matrix concentration due to Taupin et al. (2023).

Lemma 3.6.13 (Design Matrix Concentration). Let π̂ be an ε-approximate G-optimal design

on a finite set A ⊂ Rd. Let ρ, δ > 0 and t ≥ 2(1 + ε)( 1
ρ2

+ 1
3ρ

)d log(2d
δ

). Suppose Ω =

{a1, . . . ,at} is the multiset of t samples drawn i.i.d. from π̂, and let Wt = 1
t

∑t
i=1 aia

T
i .

Then:

P
[
(1− ρ)

∑

a∈A

π̂(a)aaT � Wt � (1 + ρ)
∑

a∈A

π̂(a)aaT
]
≥ 1− δ

In particular, since π̂ is ε-approximately G-optimal,

P
[

d

(1 + ρ)
≤ max

a∈A
‖a‖2

W−1
t
≤ (1 + ε)d

(1− ρ)

]
≥ 1− δ

We also require the following standard bound on the maximum of Gaussians.

Lemma 3.6.14 (Vershynin (2018b) 2.5.10). Let X1, . . . , Xn
iid∼ N(0, σ2). Then for all u > 0,

P[max
i
X2
i ≥ 4σ2 log(n) + 2u2] ≤ exp(− u2

2σ2
).
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Proof of Theorem 3.3.6. We first introduce some notation. Let Sr, Sc be the multisets of

rows/columns sampled and Ω = Sr × Sc.

Let ψj = V̂ T
P ej and ϕi = ÛT

P ei. Then, let φ̂ij = V̂ T
P ej ⊗ ÛT

P ei = ψj ⊗ ϕk, and
W =

∑
ij∈Ω φ̂ijφ̂

T
ij. Notice that:

W =

(∑

j∈Sc

ψjψ
T
j

)
⊗
(∑

i∈Sr

ϕiϕ
T
i

)

Therefore, let W1 =
∑

j∈Sc ψiψ
T
j and W2 =

∑
i∈Sr ϕiϕ

T
i for shorthand. Then W−1 exists

iff W−1
1 ,W−1

2 exist. By Lemma 3.6.13, both W−1
1 ,W−1

2 exist with probability at least

1− (m+ n)−2, since Sr, Sc are both large enough by assumption.

Therefore, conditioning on the inverses existing, if we solve the least-squares system,

we obtain M̂ ∈ Rd×d such that:

vec(M̂) = (
∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ijQ̃ij

Recall from Proposition 3.6.12 that Q = ÛPMV̂ T
P + E, where Eij = εij is the

misspecification error. Therefore, we can bound the error of Q̂ = ÛPM̂V̂ T
P as:

Q̂ij −Qij = eTi ÛP (M̂ −M)V̂ T
P ej − εij

= φ̂Tijvec(M̂ −M) + εij

=: E1;ij + E2;ij

E1;ij := φ̂Tijvec(M̂ −M)

E2;ij := εij

Let Gij
iid∼ N(0, σ2

Q) be the additive noise for Q̃ij. Then, Q̃ij = φ̂Tijvec(M) + εij +Gij.
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Hence we can write E1 as:

E1;k` =

(
φ̂Tk`(

∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ijQ̃ij

)
− φ̂Tk`vec(M)

= φ̂Tk`

(
(
∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ij
(
φ̂Tijvec(M) + εij +Gij

))
− φ̂Tk`vec(M)

= φ̂Tk`

(
(
∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ij
(
εij +Gij

))

= φ̂Tk`

(
(
∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ijεij

)
+ φ̂Tk`

(
(
∑

ij∈Ω

φ̂ijφ̂
T
ij)
−1
∑

ij∈Ω

φ̂ijGij

)

=: E3;k` + E4;k`

We analyze E4 first. Let x = W−1
∑

ij∈Ω φ̂ijGij . For any k, `, we wish to bound φ̂Tk`x.

Notice that x is a multivariate Gaussian with mean 0. Its covariance is therefore:

E[xxT ] =
∑

ij∈Ω

∑

i′j′∈Ω

W−1φ̂ijφ̂
T
i′j′W

−1 E[GijGi′j′ ] = σ2
QW

−1
(∑

ij∈Ω

φ̂ijφ
T
ij

)
W−1 = σ2

QW
−1

Hence φ̂Tk`x is a scalar Gaussian with mean zero and variance φ̂Tk`σ2
QW

−1φ̂k`. We next bound

this quadratic form. Notice that we can tensorize the quadratic form as:

φTk`W
−1φk` = (ψ` ⊗ϕk)T (W1 ⊗W2)−1(ψ` ⊗ϕk)

= (ψ`W
−1
1 ψ`)(ϕkW

−1
2 ϕk)

We apply Lemma 3.6.13 to each term in the product. With probability 1− 2(m+ n)−2, for

Sr, Sc both of size at least 20d log( 2d
m+n

),

‖ψ`‖2
W−1

1
‖ϕk‖2

W−1
2
≤ (2 + 2ε)d2

|Sr||Sc|
Conditioning on this event, the variance of φ̂Tk`x is at most

(1+ε)d2σ2
Q

|Ω|(1−ρ)
, for |Ω| = |Sr||Sc|.

Therefore, by Lemma 3.6.14,

P
[

max
k∈[m],`∈[n]

|φ̂Tk`x|2 ≤ 20 log(mn)
(2 + 2ε)σ2

Qd
2

|Ω|

]
≤ δ + (mn)−2

Finally, we analyze the error term E3;k`. Let aij = φ̂Tk`W
−1φ̂ij . By the Cauchy-Schwarz

inequality,

|E3;k`| ≤
(∑

ij∈Ω

a2
ij)

1/2
(∑

ij∈Ω

ε2ij)
1/2
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First,
∑

ij∈Ω

a2
ij =

∑

ij∈Ω

φ̂TijW
−1φ̂k`φ̂

T
k`W

−1φ̂ij

=
∑

ij∈Ω

tr

(
φ̂ijφ̂

T
ijW

−1φ̂k`φ̂
T
k`W

−1

)

= tr

(∑

ij∈Ω

φ̂ijφ̂
T
ijW

−1φ̂k`φ̂
T
k`W

−1

)

= tr

(
φ̂k`φ̂

T
k`W

−1

)

= |φ̂Tk`W−1φ̂k`|

≤ (2 + 2ε)d2

|Ω|
For the other term,

(∑

ij∈Ω

ε2ij
)1/2 ≤ |Ω|1/2 max

ij∈Ω
|εij|

It follows that maxk,`|E3;k`| ≤
√

2 + 2ε · dmaxi,j∈Ω|εij|. The conclusion follows.

3.6.7 Proof of Theorem 3.3.9

We require the following concentration result to control the sizes of masks.

Lemma 3.6.15 (Bernoulli Concentration). Let X1, . . . , Xn
iid∼ Bernoulli(p) for p ∈ (0, 1).

Then if p ≥ 10 log n,

P[|
∑

i

(Xi − p)| ≥
np

2
] ≤ n−ω(1)

Proof. By the scalar Bernstein inequality (Lemma 3.6.16), we have for B = 1 and ζ = np

that:

P[|
∑

i

(Xi − p)| ≥ τ ] ≤ 2 exp(− τ 2/2

ζ + (Bτ/3)
)

Let τ = np/2. Then

P[|
∑

i

(Xi − p)| ≥ τ ] ≤ 2 exp(
−10

8
log n)

≤ 2n−(logn)1/4
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We are ready to prove the estimation error for passive sampling.

Proof of Theorem 3.3.9. Following the notation of the proof of Theorem 3.3.6, we want to

bound E3;k` and E4;k`. However, rather than using G-optimality to bound quadratic forms of

the type φ̂k`W−1φ̂ij, we will apply spectral concentration via Proposition 3.6.17.

To this end, we condition on the events that V̂ T
P ΠRV̂P � pRow

2
and ÛT

P ΠCÛP � pCol
2
. By

Proposition 3.6.4 and Proposition 3.6.17, the two events occur simultaneously with probability

≥ 1 − 2(m ∧ n)−10. Then W−1 exists and W−1 � 4
pRowpCol

I. Therefore, for all i, j, k, `, by

incoherence,

|φ̂Tk`W−1φ̂ij| ≤
4

pRowpCol
‖φ̂k`‖‖φ̂ij‖

=
4

pRowpCol
‖ϕk‖‖ϕi‖‖ψ`‖‖ψj‖

≤ 4

pRowpCol

(
√
µ2
Uµ

2
V d

4

m2n2

)

=
4

pRowpCol

µd2

mn

Hence, by Lemma 3.6.14,

P
[

max
k∈[m],`∈[n]

|E4;k`|2 ≤ 20 log(mn)σ2
Q

4

pRowpCol

µd2

mn

]
≤ 2(m ∧ n)−10 + (mn)−2.

Next, we analyze E3. Let aij = φ̂Tk`W
−1φ̂ij. Let p = q = 2. By the Cauchy-Schwarz

inequality,

|E3;k`| ≤
(∑

ij∈Ω

apij)
1/p
(∑

ij∈Ω

εqij)
1/q
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First, we have:

∑

ij∈Ω

a2
ij =

∑

ij∈Ω

φ̂TijW
−1φ̂k`φ̂

T
k`W

−1φ̂ij

=
∑

ij∈Ω

tr

(
φ̂ijφ̂

T
ijW

−1φ̂k`φ̂
T
k`W

−1

)

= tr

(∑

ij∈Ω

φ̂ijφ̂
T
ijW

−1φ̂k`φ̂
T
k`W

−1

)

= tr

(
φ̂k`φ̂

T
k`W

−1

)

= |φ̂Tk`W−1φ̂k`|

≤ 4µd2

pRowpColmn

On the other hand,

(∑

ij∈Ω

εqij
)1/2 ≤ |Ω|1/2 max

ij∈Ω
|εij|

Notice E[|Ω|] = mnpRowpCol. By Lemma 3.6.15, with probability ≥ 1− 4(m ∧ n)−ω(1),

|Ω| ≤ 9

4
pRowpColmn

Therefore, with probability ≥ 1− 4(m ∧ n)−2,
√
|Ω|

pRowpColmn
≤ 3

2

1√
pRowpColmn

The conclusion follows.

3.6.8 Proof of Proposition 3.3.11

We require the following version of the Matrix Bernstein Inequality Chen et al. (2021).

Lemma 3.6.16 (Matrix Bernstein Inequality). Suppose that {Yi : i = 1, . . . , n} are indepen-

dent mean-zero random matrices of size d1 × d2, such that ‖Yi‖2 ≤ B almost surely for all i,

and ζ ≥ max{‖E[
∑

i YiY
T
i ]‖2, ‖E[

∑
i Y

T
i Yi]‖2}. Then,

P
[∥∥∥∥

n∑

i=1

Yi

∥∥∥∥
2

≥ τ

]
≤ (d1 + d2) exp

(
− τ 2/2

ζ +Bτ/3

)
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We now prove nondegeneracy of masks with high probability.

Proposition 3.6.17 (Spectral Concentration). Suppose that V̂P and ÛP are µV , µU -incoherent

respectively. Let ΠC ∈ {0, 1}n×n be the random matrix with diagonal entries ν1, . . . , νn and sim-

ilarly let ΠR ∈ {0, 1}m×m have diagonal entries η1, . . . , ηm. Then, assuming that µV ≤ pColn
400d logn

and µU ≤ pRown
400d logn

, we have:

P[ÛT
P ΠRÛP � pRow/2] ≥ 1−m−10

P[V̂ T
P ΠC V̂P � pCol/2] ≥ 1− n−10

Proof. Suppose that V̂P has rows y1, . . . ,yn ∈ Rd. Then,

V̂ T
P ΠC V̂P =

n∑

i=1

νiyiy
T
i .

Let vi =
√
nyi. Let pCol = E[νi]. We use p = pCol for shorthand. Notice E[V̂ T

P ΠC V̂P ] =
∑

i pyiy
T
i = pId, since V̂ T

P V̂P = Id. Therefore,
∥∥∥∥
∑

i

νiviv
T
i − pnId

∥∥∥∥
2

=

∥∥∥∥
∑

i

(νi − p)vivTi
∥∥∥∥

2

Let Yi = (νi − p)vivTi . Note that E[Yi] = 0. Next, let µ := µV . By incoherence, ‖Yi‖2 ≤
‖vi‖2

2 ≤ µd for all i. Further,

max{‖E[
∑

i

YiY
T
i ]‖2, ‖E[

∑

i

Y T
i Yi]‖2} = ‖E[

∑

i

Y 2
i ]‖2

= p(1− p)‖
∑

i

‖vi‖2
2viv

T
i ‖2

≤ p(1− p)nµd‖
∑

i

yiy
T
i ‖2

= p(1− p)nµd

Thus, by Lemma 3.6.16, for B = µd and ζ = p(1− p)nµd, we have:

P
[∥∥∥∥

n∑

i=1

Yi

∥∥∥∥
2

≥ τ

]
≤ 2n exp

(
− τ 2/2

ζ +Bτ/3

)

Setting τ = 10
√
p(1− p)nµd log n ∨ 10µd

√
log n implies that:

P
[∑

i

νiviv
T
i � pn− τ

]
≥ 1− n−10
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If µ ≤ pn
400d logn

, then τ ≤ pn/2 = pCol ·n/2. We conclude that P[V̂ T
P ΠC V̂P � pCol/2] ≥ 1−n−10.

An identical argument gives P[ÛT
P ΠRÛP � pRow/2] ≥ 1−m−10.

Corollary 3.6.18. Under the assumptions of Proposition 3.6.17, the design matrix for

passive sampling has rank d2 with probability at least 1− 2(m ∧ n)−10.

Proof. Let Ω ⊂ [m]× [n] be the set of indices corresponding to the observed entries of Q̃. Let

PΩ ∈ {0, 1}|Ω|×mn be the coordinate projection. The design matrix is precisely PΩ(V̂P ⊗ ÛP ).

Then, notice that:
(
PΩ(V̂P ⊗ ÛP ))T

(
PΩ(V̂P ⊗ ÛP )) = (V̂P ⊗ ÛP )TP T

ΩPΩ(V̂P ⊗ ÛP )

= (V̂P ⊗ ÛP )T (ΠC ⊗ ΠR)(V̂P ⊗ ÛP )

= V̂ T
P ΠC V̂P ⊗ ÛT

P ΠRÛP

By Proposition 3.6.17, this matrix has rank at least d2 with probability ≥ 1−2(m∧n)−10.

3.6.9 Proof of Theorem 3.3.12

We require the the Gilbert-Varshamov code Guruswami et al. (2019).

Theorem 3.6.19 (Gilbert-Varshamov). Let q ≥ 2 be a prime power. For 0 < ε < q−1
q

there

exists an ε-balanced code C ⊂ Fnq with rate Ω(ε2n).

We will use the following version of Fano’s inequality.

Theorem 3.6.20 (Generalized Fano Method, Yu (1997)). Let P be a family of probability

measures, (D, d) a pseudo-metric space, and θ : P→ D a map that extracts the parameters

of interest. For a distinguished P ∈ P, let X ∼ P be the data and θ̂ := θ̂(X) be an estimator

for θ(P ).

Let r ≥ 2 and Pr ⊂ P be a finite hypothesis class of size r. Let αr, βr > 0 be such that

for all i 6= j, and all Pi, Pj ∈ Pr,

d(θ(Pi), θ(Pj)) ≥ αr;

KL(Pi, Pj) ≤ βr.

Then

max
j∈[r]

EPj [d(θ̂(X), θ(Pj))] ≥
αr
2

(
1− βr + log 2

log r

)
.
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We can now prove Theorem 3.3.12.

Proof of Theorem 3.3.12. Let C ⊂ {0, 1}d2 be the 0.1-balanced Gilbert-Varshmaov code as

in Theorem 3.6.19. Let U, V ∈ Rn×d be Stiefel matrices with incoherence parameter µ = O(1).

Let P = UΣPV
T for a diagonal ΣP � 0 to be specified later. Let δQ > 0 be a positive real to

be specified later.

We will construct a family of source/target pairs indexed by C similar to Jalan et al.

(2024b). For w ∈ C, let Bw ∈ Rd×d be defined as:

Bw;ij :=

{√
mn
2d

wij = 0
√
mn
d

(1
2

+ δQ) wij = 1

Then define (Pw, Qw) = (P,UBwV
T ).

For a fixed w ∈ C, the distribution of the data (AP , Q̃) depends on the random

noise and masking of both AP , Q̃. Let DR ∈ {0, 1}m×m and DC ∈ {0, 1}n×n be the diagonal

matrices corresponding to the row/column masks for Q, and let G ∈ Rm×n have iid N(0, σ2
Q)

entries. Then Q̃ = DR(Q+G)DC .

Now, we will apply Theorem 3.6.20 to lower bound E
[

1
mn
‖Q̂−Qw‖2

F

∣∣∣∣DR, DC

]
. Fix

any DR ∈ supp(E1), DC ∈ supp(E2). Let P̃w, Q̃w denote the distribution of the data when

the population matrices are Pw, Qw and we condition on the Q-mask matrices DR, DC .

By Theorem 3.6.19, the hypothesis space indexed by C is such that log(|C|) ≥ C1d
2

for absolute constant C1 > 0. Next, for distinct w,w′ ∈ C,

KL((P̃w, Q̃w), (P̃w′ , Q̃w′)) = KL(P̃w′ , P̃w) +KL(Q̃w, Q̃w′)

≤ KL(Q̃w, Q̃w′)

= KL((DC ⊗DR)vec(Qw +G), (DC ⊗DR)vec(Qw′ +G))

Notice that we do not use any properties of P̃w, P̃w′ , and in particular allow for deterministic

P̃w = Pw = P .

Since DC , DR are fixed, this is simply the KL divergence of two multiariate Gaussians
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with the same covariance but different means. Therefore, by Lemma 3.6.9, we have that:

KL((P̃w, Q̃w), (P̃w′ , Q̃w′)) ≤
1

σ2
Q

vec(Qw −Qw′)
T (DC ⊗DR)T (DC ⊗DR)−1(DC ⊗DR)vec(Qw −Qw′)

=
1

σ2
Q

‖DR(Qw −Qw′)DC‖2
F

=
1

σ2
Q

‖DRU(Bw −Bw′)V
TDC‖2

F

≤ 1

σ2
Q

‖DRU‖2
2‖DCV ‖2

2‖Bw −Bw′‖2
F

≤ 5pRowpCol
σ2
Q

(
δ2
Q

mn

d2
)d2

=
5pRowpColmnδ

2
Q

σ2
Q

.

In the penultimate step, we used the fact that DR ∈ supp(E1), DC ∈ supp(E2).

Next, for any distinct w,w′ ∈ C, by Theorem 3.6.19 we have that Pi,j∈[d][wij 6= w′ij ] ≥
0.1. Therefore,

‖Qw −Qw′‖F = ‖U(Bw −Bw′)V
T‖F

= ‖(Bw −Bw′)‖F

=

( ∑

i,j∈[d]:wij 6=w′ij

δ2
Q

mn

d2

)1/2

≥ 1

10
δQ
√
mn

In the notation of Theorem 3.6.20, we have:

αr :=
1

10
δQ
√
mn

βr =
5pRowpColmnδ

2
Q

σ2
Q

Since log(|C|) ≥ C1d
2, we set δQ =

√
C1d2σ2

Q

10pRowpColmn
so that that βr = C1d2

2
. Therefore, by

Theorem 3.6.20, for absolute constants C2, C3, C4 > 0,

min
DR∈supp(E1),DC∈supp(E2)

E
[

1

mn
‖Q̂−Qw‖2

F

∣∣∣∣DR, DC

]
≥ C2α

2
r

mn

≥ C3δ
2
Q

≥ C4d
2σ2

Q

pRowpColmn

The conclusion follows.
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3.7 Additional Experiments and Details

Compute environment. We run all experiments on a Linux machine with 378GB of

CPU/RAM. The total compute time across all results in the paper was less than 4 hours.

Dataset details. For the gene expression experiments, we gather whole-blood sepsis gene

expression data sampled by Parnell et al. (2013), available at https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=gse54514. We take the intersection of rows and columns

present on days 1 and 2 of the study, and then filter by the 300 most expressed columns

(genes) on day 1, to obtain P,Q ∈ R31×300. Here Pij is the expression level of gene j for

patient i on day 1, and Qij is the same on day 2.

For the metabolic networks experiments, we access the BiGG genome-scale metabolic

models datasets King et al. (2016) at http://bigg.ucsd.edu. We use the same set of

shared metabolites for iWFL1372 (the source species P ) and IJN1463 (the target species Q)

as Jalan et al. (2024b). The resulting networks are weighted undirected graphs with adjacency

matrices P,Q ∈ R251×251 where Pij counts the number of co-occurrences of metabolites i, j in

iWFL1372, and Qij does the same for IJN1463.

Details of the baselines. For the method of Bhattacharya and Chatterjee (2022), we use

the estimator from their Section 2.2, but modify step (3) to truncate to the true rank d, and

in step (6) truncate to the true rank of the propensity matrix whose (i, j) entry is ηiνj. The

propensity rank is always 1 in our case. This is the estimator Q̂BC22 ∈ Rm×n.

For the method of Levin et al. (2022), we use the estimator from their Section 3.3,

with weights wP , wQ based on estimated sub-gamma parameters of the noise for P̃ , Q̃. Then,

let Q′ ∈ Rm×n be:

Q′ij :=

{
wP

wP+wQ
P̃ij +

wQ
wP+wQ

Q̃ij Q̃ij 6= ?

P̃ij otherwise

We return the rank-d SVD truncation of Q′ as Q̂LLL22 ∈ Rm×n.

We will discuss additional ablation experiments in Section 3.7.1, and experiments on

the real-world data in Section 3.7.2.
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3.7.1 Ablation Studies

Throughout this section we use the Partitioned Matrix Model with a = 0.1, b = 0.8

from Section 5.6. For each setting, we hold all parameters fixed and vary one parameter pto

observe the effect of all algorithms on both Max Sqaured Error and Mean Squared Error.

The default settings are:

• Matrices P,Q ∈ Rm×n with m = 300, n = 200.

• The parameters a = 0.8, b = 0.1 in the Partitioned Matrix Model.

• Additive noise for Q̃ is iid N(0, σ2
Q) with σQ = 0.1.

• The rank is d = 5.

• pRow = pCol = 0.5, so the probability of seeing any entry of Q is 0.25.

For all experiments, we test for 10 independent trials at each parameter setting and

display the median error of each method, along with the [10, 90] percentile.

Figure 3.9 shows that all methods do poorly in max errow when P is masked. Our

methods are best in mean-squared error. This is because the Matrix Partition Model is highly

coherent, as can be shown from spectral partitioning arguments Lee et al. (2014a). Therefore,

the max-squared error is high, as we would expect from Remark 3.3.7 and the results of Chen

et al. (2020b).

Figure 3.5: We test the effect of growing the target additive noise parameter σQ.
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Figure 3.6: We test the effect of growing the target additive noise parameter σP . Each entry
of P is observed with i.i.d. additive noise N(0, σ2

P ).

Figure 3.7: We test the effect of growing n for P,Q ∈ R300×n.

3.7.2 Additional Real-World Experiments

We first display the weighted adjacency matrices for P,Q for the metabolic networks

setting of Section 5.6 as Figure 3.10 and Figure 3.11. It is evident that the edge weights show

significant skew. Note that the colorbar for both visualizations is logarithmically scaled.

Next, we report mean-squared error for the same experimental settings discussed in

Section 5.6. Figure 3.13 shows the results for gene expression. Figure 3.12 shows the results

for metabolic data; notably, despite poor performance in max-squared error, the passive

sampling estimator is reasonably good in mean-squared error, although not as good as the

active sampling estimator.
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Figure 3.8: We test the effect of rank.

Figure 3.9: We test the effect of masking entries of P in a Missing Completely-at-Random
setup with probability p. Note that the errors for active and passive sampling are almost
identical, so we use different markers (circle and triangle resp.) to distinguish them. We
see that our methods do better in mean-squared error (left) while max error is poor for all
methods (right).
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Figure 3.10: The source matrix P in the setting of Figure 3.3.
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Figure 3.11: The target matrix Q in the setting of Figure 3.3.
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Figure 3.12: The mean-squared error of each Q̂−Q in the setting of Figure 3.3.
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Figure 3.13: The mean-squared error of each Q̂−Q in the setting of Figure 3.2.
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Chapter 4: Dynamic, Incentive-Aware Models of
Financial Networks

4.1 Introduction

The financial crisis of 2008 showed the need for mitigating systemic risks in the

financial system. There has been much recent work on categorizing such risks (Elliott et al.,

2014; Glasserman and Young, 2015, 2016; Birge, 2021; Jackson and Pernoud, 2021). While

the causes of systemic risk are varied, they often share one feature. This shared feature is the

network of interconnections between firms via which problems at one firm spread to others.

One example is the weighted directed network of debt between firms. If one firm defaults on

its debt, its creditors suffer losses. Some creditors may be forced into default, triggering a

default cascade (Eisenberg and Noe, 2001). Another example is the implicit network between

firms holding similar assets. Sales by one firm can lead to mark-to-market valuation losses at

other firms. These can snowball into fire sales (Caballero and Simsek, 2013; Cont and Minca,

2016; Feinstein, 2020; Feinstein and Søjmark, 2021).

The structure of inter-firm networks plays a vital role in the financial system. Small

changes in network structure can lead to jumps in credit spreads in Over-The-Counter (OTC)

markets (Eisfeldt et al., 2021). Network density, diversification, and inter-firm cross-holdings

can affect how robust the networks are to shocks and how such shocks propagate (Elliott et al.,

2014; Acemoglu et al., 2015). The network structure also affects the design of regulatory

interventions (Papachristou and Kleinberg, 2022; Amini et al., 2015; Calafiore et al., 2022;

Galeotti et al., 2020).

Despite its importance, many prior works use simplistic descriptions of the network

structure. For instance, they often assume that the network is fixed and observable. But

only regulators may have access to the entire network. Furthermore, shocks or regulatory

interventions can change the network. Others assume that the network belongs to a general

class. For instance, Caballero and Simsek (2013) assume a ring network between banks. Amini

et al. (2015) derive tractable optimal interventions for core-periphery networks. But financial

The content of this chapter appeared in Operations Research 2024, and can be cited as Jalan et al.
(2024a).
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networks can exhibit complex structure (Peltonen et al., 2014; Eisfeldt et al., 2021). Leverage

levels, size heterogeneity, and other factors can affect the network topology (Glasserman and

Young, 2016). Hence, there is a need for models to help reason about financial networks.

In this paper, we design a model for a weighted network of contracts between agents,

such as firms, countries, or individuals. The contracts can be arbitrary, and the edge

weights denote contract sizes. In designing the model, we have two main desiderata. First,

the model must account for heterogeneity between firms. This follows from empirical

observations that differences in dealer characteristics lead to different trade risk exposures

in OTC markets (Eisfeldt et al., 2021). Second, each firm seeks to maximize its utility and

selects its contract sizes accordingly. In effect, each firm tries to optimize its portfolio of

contracts (Markowitz, 1952). The model must reflect this behavior. From this starting point,

we ask the following questions:

1. How does a network emerge from interactions between heterogeneous utility-maximizing

firms?

2. How does the network respond to regulatory interventions?

3. How can the network structure inform the beliefs that firms hold about each other?

Next, we review the relevant literature.

Imputing financial networks. We often have only partial information about the structure

of a financial network. For example, we may know the total liability of each bank in a network.

From this, we want to reconstruct all the inter-bank liabilities (Squartini et al., 2018). One

approach is to pick the network that minimizes the Kullback-Leibler divergence from a given

input matrix (Upper and Worms, 2004). Mastromatteo et al. (2012) use message-passing

algorithms, while Gandy and Veraart (2017) use a Bayesian approach. But such random

graph models often do not reflect the sparsity and power-law degree distributions of financial

networks (Upper, 2011). Furthermore, these models do not account for the utility-maximizing

behavior of firms.

General-purpose network models. The simplest and most well-explored network model

is the random graph model (Gilbert, 1959; Erdös and Rényi, 1959). Here, every pair of nodes
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is linked independently with probability p. Generalizations of this model allow for different

degree distributions and edge directionality (Aiello et al., 2000). Exponential random graph

models remove the need for independence, but parameter estimation is costly (Frank and

Strauss, 1986; Wasserman and Pattison, 1996; Hunter and Handcock, 2006; Caimo and Friel,

2011). Several models add node-specific latent variables to model the heterogeneity of nodes.

For example, in the Stochastic Blockmodel and its variants, nodes are members of various

latent communities. The community affiliations of two nodes determine their probability of

linkage (Holland et al., 1983; Chakrabarti et al., 2004; Airoldi et al., 2008; Mao et al., 2018).

Instead of latent communities, Hoff et al. (2002a) assign a latent location to each node. Here,

the probability of an edge depends on the distance between their locations.

All the latent variable models assume conditional independence of edges given the

latent variables. But in financial networks, contracts between firms are not independent. Two

firms will sign a contract only if the marginal benefit of the new contract is higher than the

cost. This cost/benefit tradeoff depends on all other contracts signed with other firms. Unlike

our model, existing general-purpose models do not account for such utility-maximization

behavior.

Network games. Here, the payoffs of nodes are dependent on the actions of their neighbors

(Tardos, 2004). One well-studied class of network games is linear-quadratic games, with

linear dynamics and quadratic payoff functions. Prior work has explored the stability of Nash

equilibria (Guo and De Persis, 2021) and algorithms to learn the agents’ payoff functions (Leng

et al., 2020a). But our model does not yield a linear-quadratic game except in exceptional

cases. Instead, our process involves non-linear rational functions of the beliefs of firms. Thus,

our setting differs from linear-quadratic games. Recently, network games have been extended

to settings where the number of players tends to infinity (Carmona et al., 2022). However,

we only consider finite networks.

Games to form networks. Several works study the stability of networks. In a pairwise-

stable network, no pair of agents want to form or sever edges. This may be achieved via

side-payments between agents, which our model also uses (Jackson and Wolinsky, 2003).

Pairwise stability has been extended to strong stability for networks (Jackson and Van den

Nouweland, 2005), and also to weighted networks with edge weights in [0, 1] (Bich and

Morhaim, 2020; Bich and Teteryatnikova, 2022). We introduce an analogous notion called
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Higher-Order Nash stability against any deviating coalition. However, the weights in our

network are not bounded in [0, 1] and can be negative. Furthermore, our edge weights denote

contract size, requiring agreement from both parties. In contrast, prior works typically

interpret edge weights as the engagement level in an ongoing interaction.

Sadler and Golub (2021) study a network game with endogenous network formation,

whose stable points are both pairwise stable and Nash equilibria. We show similar results for

our model. But they consider unweighted networks and focus on the case of separable games.

In our setting, this corresponds to the case where all firms are uncorrelated. But in financial

networks, correlations are widespread and help firms diversify their contracts.

Several authors study the effect of exogenous inputs on production networks (Herskovic,

2018; Elliott et al., 2022a). Acemoglu and Azar (2020) also model endogenous network

formation but differ from our approach. Prices in their model equal the minimum unit cost

of production. For us, prices are determined by pairwise negotiations between firms. Also,

each firm in their model only considers a discrete set of choices among possible suppliers. In

our model, firms can choose both their counterparties and the contract sizes.

Risk-sharing and exchange economies. The pricing of risk is a well-studied problem (Ar-

row and Debreu, 1954; Bühlmann, 1980, 1984; Tsanakas and Christofides, 2006; Banerjee and

Feinstein, 2022). Most models typically price risk via a global market. However, in our model,

all contracts are pairwise, and the contract terms and payments between a buyer and seller

are bespoke. There is no global contract or global market price. Since contracts are pairwise,

each firm under our model must consider counterparty risks and the correlations between

them. A firm i may make large payments and accept a negative reward for a contract with

firm j to diversify the risk from contracts with other firms. Finally, in our model, agents can

hedge their risk by betting against one another. In contrast, Bühlmann equilibria always

result in comonotonic endowments, which firms cannot use as hedges for each other (Banerjee

and Feinstein, 2022; Yaari, 1987).

Network valuation adjustment. Some recent works price the risk due to exposure to

the entire financial network (Banerjee and Feinstein, 2022; Feinstein and Søjmark, 2022).

The network is usually treated as exogenous and fully known to all firms. In contrast, we

consider endogenous network formation resulting from pairwise interactions between firms.

The network valuation algorithm of Barucca et al. (2020) works with incomplete information,
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but is not designed for network formation, and it needs firms to share information not required

to form their contracts.

Properties of equilibria. Another line of work considers the efficiency or social welfare

of equilibria (Jackson and Pernoud, 2021; Elliott and Golub, 2022). Galeotti et al. (2020)

show that welfare-maximizing interventions rely mainly on the top or bottom eigenvectors

of the network. Elliott et al. (2022a) show an efficiency-stability tradeoff for their model

of supply network formation. Like prior work, we show that stable equilibria exist and are

non-dominated. But our emphasis is on potentially valuable insights for regulators and firms.

For instance, we show a negative result about the ability of regulators to infer the causes of

changes to the network structure. The linkage between firms’ utilities and their beliefs, and

its effect on stability, is not considered in prior work.

4.1.1 Our Contributions

We develop a new network model of contracts between heterogeneous agents, such

as firms, countries, or individuals. Each agent aims to maximize a mean-variance utility

parametrized by its beliefs. But for two agents to sign a contract, both must agree to the

contract size. For a stable network, all agents must agree to all their contracts. We show

that such constraints are solvable by allowing agents to pay each other. By choosing prices

appropriately, every agent maximizes its utility in a stable network.

Characterization of stable networks (Section 4.2): We show that unique stable net-

works exist for almost all choices of agents’ beliefs. These networks are robust against actions

by cartels, a condition that we call Higher-Order Nash Stability. The agents can also converge

to the stable network via iterative pairwise negotiations. The convergence is exponential

in the number of iterations. Hence, the stable network can be found quickly. Finally, we

show how to infer the agents’ beliefs by observing network snapshots over time, under certain

conditions.

The limits of regulation (Section 4.3): A financial regulator can observe the entire

network but not the agents’ beliefs. Suppose firm i changes its beliefs about firm j. Then

the contract size between i and j will change. Indirectly, other contracts will change too. We

show empirically that in realistic settings, the indirect effects can be as significant as the

direct effects. In such cases, the regulator cannot infer the underlying cause of changes in the
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network. Similarly, suppose the regulator intervenes with one firm, affecting its beliefs. The

resulting network changes need not be localized to that firm’s neighborhood in the network.

Thus, targeted interventions can have strong ripple effects. Broad-based interventions aimed at

increasing stability can also have adverse effects. For instance, increasing margin requirements

on contracts may even increase some contract sizes.

Outlier detection by firms (Section 4.4): A firm i can observe its contracts with

counterparties but not the entire network. Suppose another firm j (say, a real-estate firm) has

beliefs that are very different from its peers. Then, we prove that under certain conditions,

j’s contract size with i is also an outlier compared to other real-estate firms. So, firm i can

use the network to detect outliers and update its beliefs. But suppose all real-estate firms

change their beliefs. This changes all their contract sizes without creating outliers. We show

that i cannot determine the cause of this change. For example, firm i would observe the same

change whether all real-estate firms had become more risk-seeking or profitable. However,

firm i may want to increase its exposure if they are more profitable but reduce exposure if

they are more risk-seeking. Since the data cannot identify the proper action, firm i remains

uncertain. Exogenous, seemingly insignificant information may persuade firm i one way or

another. Thus, minor news may trigger drastic changes in the network.

4.2 The Proposed Model

We consider a weighted network W ∈ Rn×n between n agents (such as firms, countries,

or individuals). The element Wij represents the size of a contract between agents i and j.

We make no assumptions about the content of the contract. For instance, the contract could

be a interest rate swap, a stock swap, or an insurance contract. We assume that each pair of

firms can form a contract of a standard type, and negotiate only on the contract size and

price (discussed below). Since contracts need mutual agreement, Wij = Wji. We take Wii to

represent i’s investment in itself. Note that a negative contract (Wij = Wji < 0) is a valid

contract that reverses the content of a positive contract. For example, if a positive contract is

a derivative trade between two firms, the negative contract swaps the roles of the two firms.

Let wi denote the ith column of W (i.e., wi;j = Wji for all j). Each agent i would

prefer to set its contract sizes wi to maximize its utility. But other agents will typically have

different preferences. So, to achieve an agreement about the contract size Wij , agents i and j

125



can agree on a price for the contract. For example, i may agree to pay j an amount Pji ·Wji

in cash at the beginning of the contract. Since payments are zero-sum and Wji = Wij, we

must have Pji = −Pij. We do not model how firms raise funds to pay the price.

Each contract yields a stochastic payout, and agents have beliefs about these payouts.

We represent agent i’s beliefs by a vector µi of expected returns and a covariance matrix

Σi � 0. Thus, Σi represents firm i’s perceived risk of trading with other firms, and includes

both contract-specific risk and counterparty risk. Note that we do not assume that the

contracts are zero-sum or that the beliefs are correct, even approximately. Thus, the overall

expected return from all contracts of i is wT
i (µi−Pei), and the variance of the overall return

is wT
i Σiwi. We assume that each agent has a mean-variance utility (Markowitz, 1952):

agent i’s utility gi(W,P ) := wT
i (µi − Pei)− γi ·wT

i Σiwi, (4.1)

where γi > 0 is a risk-aversion parameter. In practice, we expect the set {γi}i∈[n] to be not too

heterogeneous (Metrick, 1995; Kimball et al., 2008; Ang, 2014; Paravisini et al., 2017). Note

that Eq. (5.1) ignores costs for contract formation; we will consider these in Section 4.3.1.

Also, we assume that Pji does not change the perceived risk.

Example 4.2.1 (Insurance Contract). Suppose firm i buys fire insurance from insurer j.

Then, µi;j is the buyer’s expected insurance payout minus the insurance premium. The

expected payout depends on the probability of a fire, for which the buyer and insurer may have

different estimates. Also, the insurance contract is negatively correlated with the buyer’s other

contracts (reflected in Σi). This is because the buyer gains a payout from the insurer in case

of a fire, but incurs losses on other contracts. Hence, the buyer i may be willing to accept a

contract with negative expected reward, and even pay a higher-than-usual premium Pji per

contract.

Example 4.2.2 (Interest rate swap contract). Suppose firm i makes fixed-rate payments to

firm j, and receives floating-rate payments in return. Then, µi;j is the expected net present

value of these payments for i from a standard unit-sized contract. This value depends on

i’s forecast of future interest rates and need for floating-rate income, e.g., to match future

liabilities. Hence, it may be quite different from µj;i. Also, the firms agree to a price

Pij = −Pji per contract. If Pij > 0, then firm j must pay firm i the price Pij ·Wij; if Pij < 0,

then firm i makes the payment.
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Example 4.2.3 (Loan contract). Suppose borrower i takes a loan of size Wij from lender j.

Then, µj;i ·Wij represents the lender j’s expected value for this loan. The expected value

depends on the repayment schedule, the collateral, j’s estimate of the probability of default,

the recovery rate in case of default, etc. The borrower’s expected value µi;j ·Wij depends

on the planned use of this loan. For example, if the borrower wants the loan to purchase

equipment, µi;j is the net present value of expected extra profits due to that equipment. Hence,

µi;j may not be a function of µj;i. Now, the borrower and lender must settle on a contract

price to reach an agreement on the contract size. If the standard loan contract requires the

lender to give cash to the borrower at the beginning of the contract, this loan amount can be

adjusted for the price. Otherwise, if the borrower firm needs to pay the price, it must arrange

a separate bridge loan.

The model above allows contracts between all pairs of agents. But some edges may

be prohibited due to logistical or legal reasons. For each agent i, let Ji ⊆ [n] denote the

ordered set of agents with whom i can form an edge. So, if k /∈ Ji (and hence i /∈ Jk), we have
Wik = Wki = Pik = Pki = 0. Similarly, if i /∈ Ji, then self-loops are prohibited (Wii = Pii = 0).

We will encode these constraints in the binary matrix Ψi ∈ R|Ji|×n where Ψi;jk = 1 if k is

the jth element of Ji, and Ψi;jk = 0 otherwise. In other words, Ψi is obtained from In by

deleting the rows corresponding to the prohibited counterparties of i. Thus, for any v ∈ Rn,

Ψiv selects the elements of v corresponding to Ji. If all edges are allowed, we have Ψi = In

for all i.

Definition 4.2.4 (Network Setting). A network setting (µi, γi,Σi,Ψi)i∈[n] captures the beliefs

and constraints of n agents. When there are no constraints (i.e., all edges are allowed), we

drop the Ψi = In terms to simplify the exposition. Finally, we will use M ∈ Rn×n to denote a

matrix whose ith column is µi, and Γ to denote a diagonal matrix with Γii = γi.

4.2.1 Characterizing Stable Points

In the above model, every agent tries to optimize its own utility (Eq.(5.1)). We now

characterize the conditions under which selfish utility-maximization leads to a stable network.

Definition 4.2.5 (Feasibility). A tuple (W,P ) is feasible if W = W T , P = −P T , and W

and P obey the constraints encoded in (Ψi)i∈[n].
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Figure 4.1: Example of a stable point for a borrower (Firm 1) and a lender (Firm 2): (a)
When the borrower cannot pay the lender an additional payment, the firms may be unable
to agree to a contract, even if trading improves their utilities. (b) By allowing for contract-
specific payments, both firms can agree on a contract size. In effect, the borrower (Firm 2)
shares its utility with the lender (Firm 1) to achieve agreement. (c) The stable network is
shown.

Definition 4.2.6 (Stable point). A feasible (W,P ) is stable if each agent achieves its

maximum possible utility given prices P :

gi(W,P ) = max
feasible(W ′,P ) under {Ψi}

gi(W
′, P ) ∀i ∈ [n].

Example 4.2.7. Suppose we only have two firms with the following setting:

mean beliefs M =

[
0 3
1 4

]

covariance Σ1 = Σ2 =

[
1 0
0 2

]

risk aversion γ1 = γ2 = 1.

So, both firms perceive a benefit from trading (M12 > 0,M21 > 0). If trading is disallowed,

the optimum W is diagonal with W11 = 0 and W22 = 1 (and P is the zero matrix). The

corresponding utilities are 0 for firm 1 and 2 for firm 2. Suppose we allow trading but do not

allow pricing (Figure 4.1a). Then, the two firms can each improve their utility by trading,

but achieve their optimum utilities at different contract sizes. Hence, they may be unable to

agree to a contract. In Figure 4.1b, firm 2 pays firm 1 a specially chosen price of 5/3 per unit

contract. At this price, both firms achieve their optimum utilities at the same contract size
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W12 = W21 = 2/3. Hence, they can agree to a contract. By paying the price, firm 2 shares

some of its utility with firm 1 to achieve agreement on the contract. This choice of W and P

is a stable point (Figure 4.1c). The following results show that this is the only stable point.�

Define Qi = ΨT
i (2γiΨiΣiΨ

T
i )−1Ψi. When all edges are allowed, Ψi = In and Qi =

(2γiΣi)
−1. Let F = {(i, j) : 1 ≤ i < j ≤ n,Ψiej 6= 0} denote the ordered pairs i < j where

Pij is allowed to be non-zero. Note that |F | ≤ n(n − 1)/2. For any n × n matrix X, let

uvec(X)F ∈ R|F | be a vector whose entries are the ordered set {Xij | (i, j) ∈ F}.

Theorem 4.2.8 (Existence and Uniqueness of Stable Point). Define n×n matrices A, B(i,j),

and C(i,j) as follows:

Aij = eTi QjMej, B(i,j) = eie
T
j Qi,

C(i,j) = (B(i,j) −B(j,i))− (B(i,j) −B(j,i))
T .

Let ZF be the |F | × |F | matrix whose rows are the ordered sets {uvec(C(i,j))F | (i, j) ∈ F}.
Then, we have the following:

1. A stable point (W,P ) under {Ψi} exists if and only if uvec(A−AT )F lies in the column

space of ZF .

2. If a stable point (W,P ) exists, then ZFuvec(P )F = uvec(A− AT )F .

3. A unique stable point always exists if ZF is full rank.

Theorem 4.2.8 is proved in Section 4.6.1. When the Σi are random variables, we give

a simple sufficient condition that a stable point exists and is unique with probability 1 (see

Sections 4.6.3 and 4.6.4). Also, Appendix 4.6.2 provides closed-form formulas for the stable

point when all agents have the same covariance (Σi = Σ for all i ∈ [n]). This occurs when

the risk of a contract is primarily counterparty risk (so Σi;jk depends on j and k, not i) and

there is reliable public data on such risks (say, via credit rating agencies).

Next, we consider some properties of the stable point. For two feasible tuples (W1, P1)

and (W2, P2), let (W2, P2) dominate (W1, P1) if for all i ∈ [n], gi(W1, P1) ≤ gi(W2, P2), with

at least one inequality being strict.
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Theorem 4.2.9 (Stable points cannot be dominated). Suppose a stable point (W,P ) exists.

Then, there is no feasible (W ′, P ′) that dominates (W,P ).

The proofs of Theorem 4.2.9 and all subsequent claims are provided in Section 4.6.

The stable point obeys a strong form of robustness that we call Higher-Order Nash

Stability. This strengthens the notions of pairwise stability (Hellmann, 2013) and pairwise

Nash (Calvó-Armengol and Ilkılıç, 2009; Sadler and Golub, 2021) by allowing for agent

coalitions, instead of just considering pairs of agents. It is also closely related to the concept

of Strong Nash equilibrium, which strengthens Nash equilibrium by requiring that no subset

of agents can deviate at equilibrium without at least one agent being worse off (Mazalov and

Chirkova, 2019).

Definition 4.2.10 (Agent Action). At a given feasible point (W,P ), an “action” by agent

i is the ordered set (w′i,j, p
′
i,j)j∈Ji, where Ji ⊆ [n] is the set of permissible edges for agent i.

The action represents a set of proposed changes to i’s existing contracts. Each agent j ∈ Ji
responds as follows:

1. If the new (w′ij, p
′
ij) raises j’s utility, then j agrees to the revised contract and price.

2. Otherwise, i must either keep the existing contract or cancel it (wij = pij = 0). We

assume that i cancels the contract if and only if this strictly increases i’s utility.

We call the shifted (W ′, P ′) the resulting network.

Definition 4.2.11 (Higher-Order Nash Stability). A feasible (W,P ) is Higher-Order Nash

Stable if:

1. Nash equilibrium: No agent i has an action such that the resulting network (W ′, P ′) is

strictly better for i.

2. Cartel robustness: For any proper subset S ⊂ [n] of agents, there is no feasible point

(W ′, P ′) that differs from (W,P ) only for indices {i, j} with i ∈ S, j ∈ S such that all

agents in S have higher utility under (W ′, P ′) than (W,P ).

Theorem 4.2.12 (Higher-Order Nash Stability). Any stable point (W,P ) is Higher-Order

Nash Stable.
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4.2.2 Finding the Stable Point via Pairwise Negotiations

To compute the stable point in Theorem 4.2.8, we must know the beliefs of all agents.

But in practice, contracts are set iteratively by negotiations among pairs of agents. We will

now formalize the process of pairwise negotiations and characterize the conditions under

which such negotiations can converge to the stable point.

We propose a multi-round pairwise negotiation process. In round t + 1, every pair

of agents i and j update the price Pij(t) to Pij(t + 1) (and hence Pji(t) to Pji(t + 1)) as

follows. First, they agree to a price P ′ij between themselves, assuming optimal contract sizes

with all other agents at the current prices P (t). In other words, we assume that the other

agents will accept the prices in P (t) and the contract sizes preferred by i and j. Under this

condition, P ′ij is the price at which i’s optimal contract size with j is also j’s optimal size

with i. We provide an explicit formula for P ′ij in Section 4.6.7. All pairs of agents calculate

these prices simultaneously. We create a new price matrix P ′ from these prices. Then, we

set P (t+ 1) = (1− η)P (t) + ηP ′, where η ∈ (0, 1) is a dampening factor chosen to achieve

convergence. Algorithm 3 shows the details.

Algorithm 3 Pairwise Negotiations
Input: η ∈ (0, 1)

t← 0

P (0)← any skew-symmetric matrix

while P (t) has not converged do
∀i, j ∈ [n], P ′ij ← pairwise-negotiated price for (i, j) (Section 4.6.7)

P (t+ 1)← (1− η)P (t) + ηP ′

t← t+ 1
end

Example 4.2.13 (Pairwise negotations for loan contracts.). Consider a 3-firm loans network

containing a national bank (firm 1), local bank (firm 2), and local firm (firm 3). Suppose that

the local firm cannot access the national bank, so the edge between firms 1 and 3 is prohibited.
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The other parameters are:

Σ1 = Σ2 = Σ3 =




1 0.25 0.75
0.25 1 0.6
0.75 0.6 1


 ,

M =




0 0.9 0.9
0.75 0 0.95
0.5 0.8 0


 , γ1 = γ2 = γ3 = 1.

Figure 4.2 shows how pairwise negotiations via Algorithm 3 converge to the stable network.
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Figure 4.2: Pairwise negotiations for the setting of Example 4.2.13: The contracts matrix
Wt and payments matrix Pt after t = 0, 5, 10 steps of Algorithm 3 (η = 0.5) converge to the
stable point (W,P ) = (W∞, P∞). Cells corresponding to forbidden edges are empty.

Now, we will show that Algorithm 3 converges. First, we define global asymptotic

stability (following Callier and Desoer (1994)).

Definition 4.2.14 (Global Asymptotic Stability). The pairwise negotiation process is globally

asymptotically stable for a given network setting and dampening factor η if, for any initial

price matrix P (0), there exists a matrix P ? such that the sequence of price matrices P (t)

converges to P ? in Frobenius norm: lim
t→∞
‖P (t)− P ?‖F = 0.

When pairwise negotiations are globally asymptotically stable, the limiting matrix P ?

must be skew-symmetric since each P (t) is skew-symmetric. Also, since prices are updated
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whenever two agents disagree on the size of the contract between them, all agents agree on

their contract sizes at P ?. Hence, P ? must be a stable point for the given network setting.

Now, we show that for a range of η, pairwise negotiations are globally asymptotically

stable (Section 4.6.9 presents an example).

Theorem 4.2.15 (Convergence Conditions and Rate). Let Qi be defined as in Theorem

4.2.8. Define the following n2 × n2 matrices:

K :=
n∑

r=1

ere
T
r ⊗Qr +Qr ⊗ ereTr

L(i−1)n+j,(i−1)n+j = Qi;j,j +Qj;i,i ∀i, j ∈ [n]

(L is diagonal).

Let L† denote the pseudoinverse of L, and (L†K) |R denote the principal submatrix of L†K

containing the rows/columns (i − 1)n + j such that the edge (i, j) is not prohibited. Let

λmax, λmin be the largest and smallest eigenvalues of the matrix (L†K) |R respectively. Let

η∗ = 2
λmax

. Then, we have:

1. For all η ∈ (0, η∗), pairwise negotiations with η are globally asymptotically stable.

2. For such an η, the convergence is exponential in the number of rounds t:

‖P (t)− P ?‖F ≤
αt

1− α · ‖P (1)− P (0)‖F ,

where α = max{|1− ηλmin|, |1− ηλmax|}.

Here, P ? is the stable point to which the negotiation converges.

Remark 4.2.16. For clarity of exposition we restrict η ∈ (0, 1) in Algorithm 3. However,

Theorem 4.2.15 shows that we only need η < η∗ for convergence to the stable point.

4.2.3 Pairwise Negotiations under Random Covariances

So far we have made no assumptions about agents’ beliefs. In this section, we analyze

the convergence of pairwise negotiations for “data-driven” agents. Specifically, each agent i

now estimates its covariance matrix. For this section only, we will call the covariance matrix

Σ̂i instead of Σi to emphasize that it is an estimated quantity.
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Suppose each agent i observes m independent data samples. Each sample is a vector

of the returns of unit contracts with all n agents. The samples for agent i are collected in a

matrix Xi ∈ Rn×m, with one column per sample. The sample covariance of this data is Σ̂i.

We assume that all agents observe samples from the same return distribution, which

has covariance Σ. Under a wide range of conditions, ‖Σ̂i −Σ‖ → 0 in probability (Vershynin,

2018a). Hence, at convergence, the maximum allowed dampening rate η? in Theorem 4.2.15

would be a function of Σ. But for finite sample sizes, each agent’s Σ̂i can be different. Hence,

the maximum dampening η̂? may be less than η?. The smaller the η̂?, the worse the rate of

convergence of pairwise negotiations. However, even with a few samples, η̂? is close to η?, as

the next theorem shows.

Theorem 4.2.17 (Small Sample Sizes are Sufficient for Fast Convergence). Suppose that

‖Σ‖, ‖Σ−1‖, ‖Γ‖, and ‖Γ−1‖ are O(1) with respect to n and all edges are allowed. Also, suppose

that each sample column of Xi is drawn independently from a N(0,Σ) distribution, and let

µ̂ = 1
m

∑
iXi and Σ̂i := 1

m−1

∑
i(Xi − µ̂)(Xi − µ̂)T . Let η̂? be the maximum dampening

factor using (Σ̂i)i∈[n] as defined in Theorem 4.2.15. Let η? be the dampening factor if Σ̂i were

replaced by Σ for all i. If m = dn log ne, then for large enough n, η̂? ≥ (1− o(1))η? with

probability at least 1− exp(−Ω(n)).

Theorem 4.2.17 shows that data-driven agents using a broad range of dampening

factors are still likely to find the stable point via pairwise negotiations. Furthermore, the

amount of data they need is comparable to the number of agents (up to a logarithmic

factor). We note that if firms use datasets of fixed sizes m1, . . . ,mn, then the conclusion

of Theorem 4.2.17 still holds, as long as minimi ≥ dn log ne. For example, firms might use

different look-back periods for covariance estimation.

4.2.4 Inferring Beliefs from the Network Structure

Suppose we are given a network that lies at a unique stable point as defined in

Theorem 4.2.8. How can we infer the beliefs of the agents?

Non-identifiability of beliefs. Suppose we are given a network W that is generated

using a single covariance Σi = Σ � 0. We want to infer the agents’ beliefs (M,Γ,Σ). By
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Corollary 4.6.1,

1

2
vec(M +MT ) = (Γ⊗ Σ + Σ⊗ Γ)vec(W ).

Clearly, the agents’ beliefs can only be specified up to an appropriate scaling of M , Γ, and Σ.

But even if we specify a scale (e.g., tr[Γ] = tr[Σ] = 1), for any valid choice of Γ and Σ we

can find a corresponding M . Thus, even in the simple setting of identical covariance and

fixed scale, the network W cannot be used to select a unique combination of the parameters

(M,Γ,Σ). By a similar argument, we cannot identify the underlying beliefs even if we observe

multiple networks generated using the same Σ and Γ (but different M). Thus, we need

further assumptions in order to infer beliefs.

Assumption 4.2.18. Consider a sequence of networks W (t) over timesteps t ∈ [T ]. We

assume that (a) Γ(t) = I and Σi(t) = Σ for all t ∈ [T ], (b) for all i, j ∈ [n], Mij(t) varies

independently according to a Brownian motion with the same parameters for all (i, j), and

(c) trΣ = 1.

The first assumption is motivated by the observations in portfolio theory that errors

in mean estimation are far more significant than covariance estimation errors (Chopra and

Ziemba, 2013). So, accounting for variations in Σ may be less important than variations in

M (but see Remark 4.2.20 below). The homogeneity of risk aversion was noted in Section 4.2,

and this justifies setting Γ = I. The second assumption is common in the literature on pricing

models (Geman et al., 2001; Bianchi et al., 2013). The third assumption fixes the scale, as

discussed above.

Proposition 4.2.19. Finding the maximum likelihood estimator of Σ under Assumption 4.2.18

is equivalent to the following Semidefinite Program (SDP):

min
Σ

T−1∑

t=1

∥∥Σ(W (t+ 1)−W (t)) + (W (t+ 1)−W (t))Σ
∥∥2

F

s. t. Σ � 0, tr(Σ) = 1.

Remark 4.2.20 (Generalization to time-varying Σ). Instead of a constant covariance Σ, the

time range may be split into intervals, with covariance Σ(j) in interval j. Then, we can add

a regularizer ν ·∑j ‖Σ(j+1) − Σ(j)‖ for some ν > 0 to the objective of the SDP to penalize

differences between successive covariances. This allows the covariance to evolve while keeping

the objective convex. The time intervals can be tuned based on heuristics or prior information.
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4.3 Insights for Regulators

A financial regulator can observe the network but does not know the firms’ beliefs.

The regulator may ask: what changes in beliefs caused recently observed changes in the

network? What are the side effects of different regulatory interventions? To answer these

questions, we need to know how changes in firms’ beliefs or utility functions affect the network.

That is the subject of this section.

4.3.1 Effect of Friction in Contract Formation

Our model imposes no costs for contract formation. This is reasonable for large firms

where the fixed costs associated with contract negotiations may be small relative to the

contract sizes. However, in an overheating market, a regulator may impose frictions by

penalizing large contracts, for example by increasing margin requirements.

We model contract costs via an adding a penalty term Fi(wi) to the utility of agent i

in Eq. (5.1):

agent i’s utility gi(W,P ) := wT
i (µi − Pei)− γi ·wT

i Σiwi − Fi(wi). (4.2)

Theorem 4.3.1. Consider a network setting where Σi = Σ and all edges are allowed.

Suppose that for each firm i ∈ [n], the function Fi : Rn → R is twice differentiable, and

there exist strictly increasing functions fji : R → R such that for all x ∈ Rn, ∇Fi(x) =

[f1i(x1), . . . , fni(xn)]T . Then, there exists a unique stable point.

Example 4.3.2. By imposing frictions, the regulator may increase the sizes of certain

contracts. For example, let Fi(wi) = ε ·w2
i;i + λ ·∑j 6=iw

2
i;j for some λ > ε > 0. Thus, the cost

of inter-firm trades scales with the square of the contract size (we assume ε ≈ 0). Consider a

network setting with 3 firms, with γi = 1, Σi = Σ =
[

0.1 0.1 0.1
0.1 1 0.5
0.1 0.5 1

]
, and M =

[
0 1000 111.233

1000 1 0.1
1000 0.1 1

]
.

Then, W23 = W32 ≈ 0 without frictions (when Fi(wi) = 0) but |W23| > 0 for λ > 0.

4.3.2 Effect of Changes in Firms’ Beliefs

Regulatory actions can change the risk and expected return perceptions of firms. The

next theorem shows the effect of such belief changes on the stable point.

Theorem 4.3.3. Suppose Σi = Σ for all firms, and let M be the matrix of expected returns.
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1. Change in beliefs about expected returns: Let Σ have the eigendecomposition

Σ = V ΛV T . Then for i, j, k, ` ∈ [n],

∂Wij

∂Mk`

=
1

2
√
γiγjγkγ`

·
∑

s,t∈[n]

VisVksVjtV`t + VisV`sVjtVkt
λs + λt

. (4.3)

In particular, Wij is monotonically increasing with respect to Mij.

2. Risk scaling: If the covariance Σ changes to cΣ (c > 0), then W changes to (1/c)W .

3. Increase in perceived risk: Suppose γi = γ for all i, and the covariance Σ increases

to Σ′ � Σ. Let W and W ′ be the stable points under Σ and Σ′ respectively. Then,

tr(MT (W ′ −W )) < 0.

This shows that, in general, an increase in risk leads to a decrease in the weighted

average of the contract sizes. The weights are given by the expected return beliefs of the

firms. However, individual contracts between firms can increase, as can the norm ‖W‖F .
This is because increases in the covariance Σ may also increase correlations, which can offer

better hedging opportunities. By hedging some risks, larger contract sizes can be supported.

Theorem 4.3.3 also shows that a change in the perceived expected return Mk` affects

all contracts Wij . Can we trace the changes in W back to the underlying changes in M? For

instance, consider the following problem.

Definition 4.3.4 (Source Detection Problem). Suppose that a financial regulator observes

two networks W and W ′, with the only difference being a small change in a single entry of

M (say, Mij). Can the regulator identify the pair (i, j)?

One approach is to try to infer all beliefs of all firms, and then identify the changed

belief. But, as discussed in Section 4.2.4, the beliefs are only identifiable under extra

assumptions and more data. An alternative approach for the source detection problem is

to find the entry (i, j) with the largest change |Wij −W ′
ij|. The intuition is that a change

in Mij has a direct effect on Wij and (hopefully weaker) indirect effects on other contracts.

Thus, the source detection problem is closely tied to the following:

Definition 4.3.5 (Targeted Intervention Problem). Can a regulator induce a small change

in a single entry of M (say, Mij) such that the change in Wij is significantly larger than

changes in other entries of W?
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(a) Predict most shifted contract as source
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(b) Predict top-10 most shifted contracts

Figure 4.3: Source Detection Problem in a noisy scaled equi-correlation model of Σ: We rank
the entries of W by the magnitude of change induced by a change in one entry of M (Mij).
Plot (a) shows the fraction of times Wij is most-changed entry of W . Plot (b) shows the
fraction of times Wij is among the top-10 most changed entries of W . The success rate goes
to zero as α and ε increase.

When all eigenvalues of Σ are equal (that is, Σ ∝ In), a change in Mk` only affects

Wk`(= W`k), as can be seen from Corollary 4.6.1. But when the eigenvalues are skewed, the

terms in Eq. (4.3) corresponding to the smallest eigenvalues have greater weight. In such

circumstances, the indirect effect of a change in Mk` on other Wij can be significant. The

following empirical results show that this is indeed the case.

Empirical Results for the Source Detection Problem (Simulated Data). Here, we

set the covariance Σ = D1/2(R + E)D1/2, where D is a diagonal matrix, R a correlation

matrix, and E a noise matrix. If E = 0, then Dii would be the variance of firm i. We set

Dii according to a power law: Dii = i−α for an α > 0. Larger values of α correspond to

greater skew in the variances. We choose R to be an equi-correlation matrix with 1 along the

diagonal and ρ ∈ (0, 1) everywhere else. We draw the error matrix E from a scaled Wishart

distribution: E = ‖R‖2 ·W(
√
ε · In, n)/n for some chosen the noise level ε. As ε increases, the

noise E dominates R.

Figure 4.3 shows the success rate of source detection over 1000 experiments for various

values of (ε, α) for ρ = 0.1 and n = 50. As α increases, the variances become more skewed

and the source detection can fail even with ε = 0 noise. When ε grows, the success rate for

the source detection problem goes to zero. This suggests that skew combined with noise

makes source detection difficult. These trends occur even if we only test whether the source
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(a) Simulated network of 96 portfolio managers.
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(b) 46-country (OECD) trade network.

Figure 4.4: Source Detection Problem on real-world data: The success rate scales monotonically
with the number of samples used to construct the data-driven covariance matrix Σ̂.

belongs to the 10 most changed contracts (Figure 4.3b), as opposed to single largest change

(Figure 4.3a). We observe similar results for real-world choices of Σ, as we show next.

Empirical Results for the Source Detection Problem (Real-World Data). We

consider two datasets: (a) a trade network between 46 large economies (OECD, 2022),

and (b) a simulated network between 96 portfolio managers following various Fama-French

strategies Fama and French (2015). For each dataset, we construct a “ground-truth” covariance

Σ using all available data (the details are in Section 4.7 of the supplementary materials).

Then, using m independent samples xi ∼ N(0,Σ), we build a “data-driven” covariance

Σ̂ = (1/(m− 1))
∑m

i=1(xi − µ̂)(xi − µ̂)T , where µ̂ = (1/m)
∑m

i=1 xi is the sample mean. We

use this Σ̂ to construct the financial network.

Figure 4.4 shows the success rate over 500 experiments for various choices of the sample

size m. The success rate increases monotonically with m. The reason for this behavior lies in

the spectra of Σ and Σ̂. We find that in both datasets, the largest and smallest eigenvalues

of Σ are separated by several orders of magnitude. This gap becomes even more extreme in

the data-driven Σ̂; the fewer the samples m, the greater the gap (see Figure 4.5). In fact, we

observe that the smallest eigenvalue of Σ̂ is much smaller than the second-smallest eigenvalue:

λn � λn−1. Zhao et al. (2019) make similar observations.

In summary, the experiments on both simulated and real-world datasets highlight the

difficulty of source detection and targeted intervention in realistic networks. The reason is the

skew in the eigenvalues coupled with noise, which affects the eigenvectors. Skewed eigenvalues
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Figure 4.5: The eigenvalues of estimated covariance matrices are skewed, and the degree of
skew depends on the number of samples m. As m decreases, so does the smallest eigenvalue
λn and the ratio λn/λn−1.

correspond to trade combinations (eigenvectors) that are seemingly low-risk. Hence, firms

use such trades to diversify. This implies that these eigenvectors have an outsized effect

on the network, and how it responds to local changes. Intuitively, if these eigenvectors are

“random,” the effect of a changed belief Mk` affects the rest of the network randomly. Hence,

the direct effects on Wk` may be less than the indirect effects on other Wij. We explore this

theoretically in Section 4.6.14 of the supplementary material.

4.4 Insights for Firms

Until now, we have treated the beliefs of firms as fixed and exogenous. In this section,

we consider how a firm can use its contracts to gain insights into other firms and update its

beliefs.

For instance, suppose a firm j faces a crisis, e.g., a looming debt payment that may

make it insolvent. The firm may then become risk-seeking (i.e., lower its γj), hoping that the

risks pay off. Another firm i may be unaware of the crisis, so i’s risk perceptions (perhaps

based on historical data) would be outdated. Can firm i infer the lower γj, solely from i’s

contracts wi with all firms? What if a group of firms become risk-seeking, and not just one

firm?
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4.4.1 Detecting Outlier Firms

Intuitively, firm i will try to answer these questions by comparing the behavior of

firm j against other similar firms. We formalize this by assuming that each firm j belongs

to a community θj, e.g., banking, or real-estate, or insurance, etc. The community of each

firm is publicly known. Firms in the same community are perceived to have similar return

distributions:

Mij = f(θi, θj) + ε′θi,j, Σij = g(θi, θj), γi = h(θi) + εi (4.4)

for some unknown deterministic functions f(.), g(.), and h(.) and random error terms εi and

ε′θi,j. We also assume that all firms use the same covariance Σ.

Now, suppose one firm j is an outlier, with very different beliefs from other firms in

its community. For firm i to detect the outlier firm j, the contract size Wij should deviate

from a cluster of contracts {Wij′ | θj′ = θj} of other firms from the same community as firm

j. Now, outlier detection methods often assume independent datapoints. In our model, all

contracts are dependent. But we can still do outlier detection if the contracts are appropriately

exchangeable. We prove below this is the case.

Definition 4.4.1. An intra-community permutation is a permutation π : [n]→ [n] such that

π(i) = j implies that θi = θj.

Proposition 4.4.2. Suppose M,Σ,Γ exhibit community structure (Eq. (4.4)), and all the

error terms (εi)i∈[n] and (ε′θi,j)i,j∈[n] are independent and identically distributed. Let π :

[n] → [n] be any intra-community permutation, and let Π : Rn → Rn be the corresponding

column-permutation matrix: Π(ei) = eπ(i). Then, W and ΠTWΠ are identically distributed.

Corollary 4.4.3. Let j1, . . . , jm ∈ [n] belong to the same community: θj1 = · · · = θjm.

Suppose the conditions of Proposition 4.4.2 hold. Then, for any i ∈ [n], the joint distribution

of (Wi,j1 , . . . ,Wi,jm) is exchangeable.

Empirical Results for Outlier Detection. We generate community-based net-

works (Eq. (4.4)) such that γi ∼ N(1, σ2) truncated to [0.5, 1.5]. The smaller the σ, the more

closely the γi values cluster around 1. For the outlier risk-seeking firm, we set γoutlier = 0.5.

For clarity of exposition, we set ε′ = 0 everywhere.
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Figure 4.6: Success rate for detecting outlier risk-seeking firms: Detection is easier when
there are fewer firms and when the risk-seeking firm’s γoutlier is more standard deviations
away from the γ of the normal firms.

To detect outliers under exchangeability (Corollary 4.4.3), we can use methods based

on conformal prediction (Guan and Tibshirani, 2022). Here, we use a simpler approach:

pick the firm j with the largest contract size as the outlier; ĵ := arg max
j∈{j1,...,jm}

|Wi,j|. To test

sensitivity to false negatives, we also test whether the outlier is among the 5 largest contracts

in {|Wi,j| : j = j1, . . . , jm}. We run 500 experiments for each choice of σ, and count the

frequency with which the outlier firm is detected via its contract size. Further details are

presented in Section 4.7.3 of the supplementary material.

Figure 4.6 shows the results. We characterize the degree of outlierness by how many

standard deviations away γoutlier is from the baseline of 1. The smaller the σ, the more

the outlierness. The success rate increases with increasing outlierness, as expected. It also

increases when the number of firms n is reduced. This is because contract sizes depend on the

γ values of all firms; fewer firms reduces the chances of any one firm attaining large contract

sizes due to randomness.

4.4.2 Risk-Aversion versus Expected Returns

The discussion above shows that a firm can detect outlier counterparties. However,

the firm cannot determine why the counterparty is an outlier, as the following theorem shows.

Theorem 4.4.4 (Non-identifiability of risk-aversion versus expected returns). Consider two

network settings S = (µi,Σ, γi)i∈[n] and S ′ = (µi,Σ, γ
′
i)i∈[n] which differ only in the risk-
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aversions of firms J = {j | γj 6= γ′j} ⊆ [n]. Then, there exists a setting S† = (µ†i ,Σ, γi)i∈[n]

such that µi = µ†i for all i /∈ J and the stable networks under S† and S ′ are identical.

Thus, one cannot determine if an outlier is more risk-seeking than its community or

expects higher profits. But risk-seeking behavior may be indicative of stress, while higher

profits than similar firms are unlikely. Hence, in either case, the firm detecting the outlier

may choose to reduce its exposure to the outlier. However, this approach fails if an entire

community shifts its behavior. The following example illustrates the problem.

Example 4.4.5. Consider two communities numbered 1 and 2, with n1 and n2 firms respec-

tively. Let the setting S of Theorem 4.4.4 correspond to

Mij =





a if θi = θj = 1
b if θi = θj = 2
c/2 otherwise

Σij =





1 if θi = θj = 1
1 if θi = θj = 2
0 otherwise

γi = 1.

Now, suppose that under setting S ′, γi 7→ γi + δ for some small δ for all nodes i in community

1. The change in the network would be the same if we had updated the columns corresponding

to community 1 in the M matrix instead (setting S†):

M †
ij = Mij + ∆(θi, θj)

∆(θi, θj) +O(δ2) =





−δa/2 if θi = θj = 1
−δb · n2/(n1 + n2) if θi = 2, θj = 1

0 if θj = 2

Thus, a firm from community 2 cannot determine if the network change was due to a change

in (γi)θi=1 or (µi)θi=1. For instance, when b > 0, an increase in risk-seeking (δ < 0) looks

the same as an increase in trading benefits (∆(1, 2) > 0). In the former case, firms in

community 2 should reduce their exposure to community 1 firms. But in the latter case, they

should increase exposure. Since the data cannot be used to choose the appropriate action, the

behaviors of firms may be guided by their prior beliefs or inertia. When such beliefs change

due to external events (e.g., due to news about one firm in community 1), the resulting change

in the network may be drastic. �
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4.5 Conclusions

We have proposed a model of a weighted undirected financial network of contracts.

The network emerges from the beliefs of the participant firms. The link between the two is

utility maximization coupled with pricing. For almost all belief settings, our approach yields

a unique network. This network satisfies a strong Higher-Order Nash Stability property.

Furthermore, the firms can converge to this stable network via iterative pairwise negotiations.

The model yields two insights. First, a regulator is unable to reliably identify the

causes of a change in network structure, or engage in targeted interventions. The reason is

that firms seek to diversify risk by exploiting correlations. We find that in realistic settings,

there are often combinations of trades that offer seemingly low risk. Hence, all firms aim

to use such trades. The over-dependence on a few such combinations leads to a pattern of

connections between firms that thwarts targeted regulatory interventions.

The second insight is that firms can use the network to update their beliefs. For

instance, they can identify counterparties that behave very differently from their peers.

However, the cause of the outlierness remains hidden. If all firms in one line of business

become more risk-seeking, the result is indistinguishable from that business becoming more

profitable. Innocuous events (such as a news story) may cause beliefs to change suddenly,

leading to drastic changes in the network. In addition to identifying risky counterparties,

firms may use the network to update their mean and covariance beliefs. For example, a firm

that suffers significant losses on its current trades may be judged by others to be a riskier

counterparty for future trades. We leave this for future work.

Our work focuses on mean-variance utility, but some of our results are applicable in

other settings too. A second-order Taylor approximation of a twice-differentiable concave

utility matches the form of a mean-variance utility. Hence, results based on mean-variance

utility can be useful guides for small perturbations around a stable point. Some of our

results for pairwise negotiations and targeted interventions are based on such perturbation

arguments.

Finally, contract formation under budget constraints is an important direction for

future work. In Theorem 4.3.1, we only consider contract frictions that depend on a firm’s

contract sizes. To model budget constraints, we must also consider the contract prices. These
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require different techniques than our approach, which is based on results from Sandberg and

Willson (1972) (see Section 4.6.17 in the supplementary material).

4.6 Proofs and Additional Results
4.6.1 Proof of Theorem 4.2.8

Recall that Qi = ΨT
i (2γiΨiΣiΨ

T
i )−1Ψi, F = {(i, j) : 1 ≤ i < j ≤ n,Ψiej 6= 0}, and

uvec(X)F ∈ R|F | is a vector whose entries are the ordered set {Xij | (i, j) ∈ F}. Note that

ΨiΣiΨ
T
i is positive definite, since it is a principal submatrix of the positive definite matrix Σi.

Proof. Proof of Theorem 4.2.8. For clarity of exposition, we first prove the result when all

edges are allowed, and then consider the case of disallowed edges.

(1) All edges allowed. Here, E = {i, j | 1 ≤ i < j ≤ n}, and we use uvec(.) and Z to

refer to uvec(.)E and ZE in the theorem statement. For any price matrix P with P = −P T ,

consider the matrix W whose jth column has the utility-maximizing contract sizes for agent

j:

Wij = eTi ΨT
j (2γjΨjΣjΨ

T
j )−1Ψj(M − P )ej

= eTi Qj(M − P )ej.

The tuple (W,P ) is stable if W = W T . So, for all i < j, we require

Wij = Wji (4.5)

⇔ eTi Qj(M − P )ej = eTj Qi(M − P )ei

⇔ eTi QjMej − eTj QiMei = eTi QjPej − eTj QiPei

⇔ eTi (A− AT )ej = eTi (QjP − (QiP )T )ej. (4.6)

Since P = −P T , we must have P = R−RT , where R is upper-triangular with zero on the

diagonal. Hence, using Qi = QT
i , we have

eTi (QjP − (QiP )T )ej = eTi (QjP + PQi)ej

= trP (eje
T
i Qj +Qieje

T
i )

= tr(R−RT )(B(j,i) +BT
(i,j))

= trRTC(i,j)

= uvec(R)Tuvec(C(i,j)),
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where we used the upper-triangular nature of R in the last step. Plugging into Eq. (4.6),

a stable point exists if and only if there is an appropriate vector p := uvec(R) ∈ Rn(n−1)/2

such that for all 1 ≤ i < j ≤ n, eTi (A − AT )ej = uvec(C(i,j))
Tp. This is equivalent to

uvec(A−AT ) = Zp. If such a solution vector p exists, then by definition it corresponds to a

matrix P = −P T via P = R−RT and p = uvec(R).

(2) Disallowed edges. If {i, j} is a prohibited edge then Ψiej = Ψjei = 0, so B(i,j) =

B(j,i) = 0, so eTijZ = 0T . Also, Aij = Aji = 0 so uvec(A− AT )ij = 0. Therefore, the equality

eTi (A− AT )ej = uvec(C(i,j))
Tx is achieved for any solution vector x if {i, j} is a prohibited

edge. We can therefore reduce the linear system Zp = uvec(A−AT ) from part (1) by deleting

rows of Z corresponding to prohibited edges.

Similarly, since the system is constrained by pij = 0 for prohibited edges {i, j}, the
columns of Z corresponding to such edges have no effect on the solution set.

We conclude that the linear system in (1) is equivalent to the (unconstrained) reduced

system ZFpF = uvec(A − AT )F . Each solution pF corresponds to a skew-symmetric P

by construction. Finally, if ZF has full rank then the unique reduced solution is pF =

Z−1
F uvec(A− AT )F .

4.6.2 Stable Network for the Shared Covariance Case

In the case of a shared covariance matrix for all agents, we can give a closed form

expression for the stable network.

Corollary 4.6.1 (Shared Σ, all edges allowed). Suppose Σi = Σ and Ψi = In for all i ∈ [n].

Let (λi,vi) denote the ith eigenvalue and eigenvector of Γ−1/2ΣΓ−1/2. Then, the network W

can be written in two equivalent ways:

vec(W ) =
1

2
(Γ⊗ Σ + Σ⊗ Γ)−1vec(M +MT ),

W = Γ−1/2

( n∑

i=1

n∑

j=1

vTi Γ−1/2

2(λi + λj)
(M +MT )Γ−1/2vjviv

T
j

)
Γ−1/2.

The prices can be written as:

vec(P ) = (Γ−1 ⊗ Σ−1 + Σ−1 ⊗ Γ−1)−1vec(Σ−1MΓ−1 − Γ−1MTΣ−1)

P = Γ1/2

( n∑

i=1

n∑

j=1

vTi Γ1/2

λ−1
i + λ−1

j

(Σ−1MΓ−1 − Γ−1MTΣ−1)Γ1/2vjviv
T
j

)
Γ1/2.
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Proof. Proof. We first prove the identity with vec(W ).

For each agent i the optimal set of contracts is given aswi = (2γiΣi)
−1(M−P )ei. Since

Σi = Σ for all i, we obtain W = 1
2
Σ−1(M − P )Γ−1. Hence M −P = 2ΣWΓ. Using W = W T

and P T = −P for a stable feasible point (W,P ), we obtain ΣWΓ + ΓWΣ = 1
2
(M +MT ).

Vectorization implies (Γ⊗ Σ + Σ⊗ Γ)vec(W ) = 1
2
vec(M +MT ). It remains to show

that (Γ⊗ Σ + Σ⊗ Γ) is invertible.

Let K := (Γ⊗Σ + Σ⊗ Γ) for shorthand. Notice K = (Γ1/2⊗ Γ1/2)(I ⊗ Γ−1/2ΣΓ−1/2 +

Γ−1/2ΣΓ−1/2 ⊗ I)(Γ1/2 ⊗ Γ1/2). Let K ′ = (I ⊗ Γ−1/2ΣΓ−1/2 + Γ−1/2ΣΓ−1/2 ⊗ I). Since

(Γ1/2 ⊗ Γ1/2) is invertible it suffices to show K ′ is invertible.

Properties of Kronecker products imply that if a matrix A ∈ Rn×n has strictly

positive eigenvalues then σ(I ⊗ A + A⊗ I) = {λ + µ : λ, µ ∈ σ(A)} counting mutiplicities

(Horn and Johnson, 1994). Let v 6= 0. Then, since Σ � 0 and Γ−1/2 � 0 we obtain

vTΓ−1/2ΣΓ−1/2v = (Γ−1/2v)TΣ(Γ−1/2v) > 0. Hence Γ−1/2ΣΓ−1/2 � 0, so K ′ is invertible and

hence K is invertible. This proves the first identity.

Next, we prove the second identity. Properties of Kronecker products imply that

(K ′)−1 has eigendecomposition (K ′)−1 =
∑n

i=1

∑n
j=1

1
λi+λj

(vi ⊗ vj)(vi ⊗ vj)T .

Therefore, since (Γ1/2 ⊗ Γ1/2)−1 = (Γ−1/2 ⊗ Γ−1/2) we obtain:

vec(W ) = (Γ−1/2 ⊗ Γ−1/2)
n∑

i=1

n∑

j=1

1

λi + λj
(vi ⊗ vj)(vi ⊗ vj)T (Γ−1/2 ⊗ Γ−1/2)vec

(M +MT

2

)

= (Γ−1/2 ⊗ Γ−1/2)
n∑

i=1

n∑

j=1

1

2(λi + λj)
vec
(
Γ−1/2(M +MT )Γ−1/2

)

= (Γ−1/2 ⊗ Γ−1/2)vec

( n∑

i=1

n∑

j=1

vTi Γ−1/2

2(λi + λj)
(M +MT )Γ−1/2vjviv

T
j

)

W = Γ−1/2

( n∑

i=1

n∑

j=1

vTi Γ−1/2

2(λi + λj)
(M +MT )Γ−1/2vjviv

T
j

)
Γ−1/2

Finally, the formulas for vec(P ) and P follow from similar reasoning, using W = W T

and W = 1
2
Σ−1(M − P )Γ−1.
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4.6.3 Example of Stable Network

To illustrate Theorem 4.2.8, consider the following example.

Example 4.6.2 (Stable points). Consider a 3-firm network where the only allowed edges

are given by F = {(1, 2), (1, 3)}. Suppose firms share the same covariance belief matrix

Σ1 = Σ2 = Σ3 = Σ, but have different mean beliefs M =
[
µ1 µ2 µ3

]
and risk aversions.

The firms’ beliefs are:

M =




0 2/3 1/2
1 0 0
1 0 0


 ,

Σ =




1 1/2 1/2
1/2 1 1/2
1/2 1/2 1


 , γ1 = 1, γ2 = 1/2, γ3 = 1/4

Then the A,B(i,j) matrices in Theorem 4.2.8 are given as:

A =




0 2/3 3/4
1/2 0 0
1/2 0 0


 , B(1,2) =




0 3/4 −1/4
0 0 0
0 0 0


 ,

B(1,3) =




0 −1/4 3/4
0 0 0
0 0 0


 , B(2,1) =




0 0 0
1 0 0
0 0 0


 ,

B(3,1) =




0 0 0
0 0 0

3/2 0 0




Hence

C(1,2) =
1

4




0 7 −1
−7 0 0
1 0 0


 , C(1,3) =

1

4




0 −1 9
1 0 0
−9 0 0


 ,

Therefore, ZF = 1
4

[
7 −1
−1 9

]
and uvec(A−AT )F = (1/6, 1/4)T . Since ZF is full-rank,

there exists a unique stable point for this network setting.

4.6.4 Stable Points are Common

Lemma 4.6.3. Define F , ZF and Qi as in Theorem 4.2.8. Let Q′i be such that

(Q′i)j,k =

{
(Qi)j,k + β if j = k, (i, j) ∈ F
(Qi)j,k otherwise

Then, the corresponding Z ′F has the form Z ′F = ZF + βI.
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Proof. Proof of Lemma 4.6.3. This follows from the form of the matrices B(i,j) and C(i,j) in

the statement of Theorem 4.2.8.

Now, we consider the Σi’s (and hence theQi’s) to be random variables. Any distribution

of {Σi}i∈[n] induces a distribution on {Qi}i∈[n], where Qi � 0. Define Q̃i := Qi − δI, where
δ > 0 is the minimum of union of the (nonzero) eigenvalues of all the Qi’s. A distribution

over {Qi} corresponds to a distribution over ({Q̃i}, δ).

Proposition 4.6.4. If the distribution of δ given {Q̃i}i∈[n] is continuous, then a unique stable

point exists with probability 1.

Proof. Proof of Proposition 4.6.4. Let Z̃F be the |F | × |F | matrix generated from {Q̃i}i∈[n],

and ZF the corresponding matrix for {Qi}i∈[n]. By Lemma 4.6.3, ZF = Z̃F + δI. Hence,

σ(ZF ) = σ(Z̃F )+δ, where σ(M) denote the set of eigenvalues ofM . Since σ(Z̃F ) is a function

of {Q̃i} and δ is continuous given {Q̃i}, the eigenvalues of ZF are non-zero with probability

1. Hence, by Theorem 4.2.8, a unique stable point exists for {Qi} with probability 1.

Note that we require no condition on the distribution of {Q̃i}. The condition of

Proposition 4.6.4 is satisfied if the joint distribution of the {Σi}i∈[n] is continuous and all

edges are permitted, as shown in the following example.

Example 4.6.5. Fix some n ≥ 2. Suppose the joint distribution of the {Σi}i∈[n] is continuous

and all edges are permitted. Then Qi = (2γi)
−1Σ−1

i so the joint distribution of {Qi}i∈[n] is

continuous. By Bayes’ rule, P[δ|Q̃1, . . . , Q̃n] ∝ P[δ, Q̃1, . . . , Q̃1] = P[Q1, . . . , Qn]. Since

P[Q1, . . . , Qn] is continuous, we conclude P[δ|Q̃1, . . . , Q̃n] is continuous.

4.6.5 Proof of Theorem 4.2.9

Proof. Proof of Theorem 4.2.9. Case 1: P = P ∗. First, consider a feasible (W,P ) such

that P = P ∗. Then W 6= W ∗. Since W ∗ is stable, by definition each agent optimizes

contracts with respect to P ∗, so no agent is worse off under (W ∗, P ∗) then (W,P ∗). Hence

(W,P ) 6� (W ∗, P ∗).

Case 2: P 6= P ∗. Second, suppose that P 6= P ∗. Let ∆i := gi(W,P )− gi(W,P ∗). It
follows that ∆i = (Wei)

T ((P ∗ − P )ei). Let A ∈ Rn×n be defined as Aij = Wij(P
∗
ij − Pij).

Then ∆i = eTi A1.
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Next, notice that Aji = −Aij. Therefore,
∑

i ∆i = 1TA1 = 0. Hence, either ∆i = 0

for all i, or there exists k such that ∆k < 0.

Case 2(i). Suppose there exists k such that ∆k < 0. Then gk(W,P ) < gk(W,P
∗).

By case 1, we have gk(W,P ∗) ≤ gk(W
∗, P ∗). Therefore agent k is strictly worse off, so

(W,P ) 6� (W ∗, P ∗).

Case 2(ii). Suppose ∆i = 0 for all i. Then gi(W,P ) = gi(W,P
∗) for all i. By case 1, we

have gi(W,P ∗) ≤ gi(W
∗, P ∗). Therefore no agent is better off, so (W,P ) 6� (W ∗, P ∗).

4.6.6 Proof of Theorem 4.2.12

Proof. Proof of Theorem 4.2.12. First, we argue (W,P ) is a Nash equilibrium. Suppose that

agent i wants to shift some of their contracts at the stable feasible point (W,P ). Suppose

they propose (w′i,j1 , p
′
i,j1

), . . . , (w′i,jm , p
′
i,jm) for j1, . . . , jm ∈ [n]. Let (W ′, P ′) denote the new

feasible point that occurs if all changes are accepted. By Theorem 4.2.9 we know that

(W ′, P ′) 6� (W,P ), so at least one agent does not prefer (W ′, P ′). Since the only changes are

to edges {i, j1}, . . . , {i, jm}, there must exist a j ∈ {j1, . . . , jm} who does not prefer (W ′, P ′).

Therefore, they will reject the proposal of agent i to shift to (w′ij, p
′
ij).

Then, agent i can choose to either maintain the existing contract (wij, pij) or delete

the edge {i, j}. We claim that agent i prefers to keep the edge, since they could have chosen

to set Wij = 0 during the network formation process, no matter what price was offered. But

Wij 6= 0 at equilibrium (W,P ). By stability of (W,P ) we know Wij is the optimal choice for

agent i at prices P . Therefore, after agent j rejects (w′ij, p
′
ij), it follows that the edge remains

at (wij, pij).

Since (W ′, P ′) was arbitrary, we conclude that at equilibrium, agent i cannot propose

any set of changes that result in a strictly better network for them. Therefore, their optimal

action at (W,P ) is to not deviate from the equilibrium.

Next, we show cartel robustness. Suppose S ⊂ [n] is a strict subset and (W ′, P ′) 6=
(W,P ) is a feasible point differing only at indices {i, j} such that i, j ∈ S. By Theorem 4.2.9,

we know (W ′, P ′) cannot dominate (W,P ), so there is some agent i ∈ [n] that does not prefer

(W ′, P ′) to (W,P ). Since (W ′, P ′) only changes contracts where both members are in S, the

utility of agents in [n] \ S must be unchanged. Therefore i ∈ S, and hence not all members

of the cartel have higher utility under (W ′, P ′).
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4.6.7 Price Update Rule for Pairwise Negotiations

We give an explicit formula for the updated price of a unit contract after a pairwise

negotiation.

Proposition 4.6.6 (Price after Pairwise Negotiation). Consider a network setting (µi, γi,Σi,Ψi)i∈[n].

Let Qi be as in Theorem 4.2.8. Given a price matrix P = −P T and a pair of firms (i, j) that

are permitted to trade, let P ′ be another skew-symmetric price matrix such that (a) P ′ differs

from P only in the cells (i, j) and (j, i), (b) i and j both maximize their utility at the same

contract size under P ′, and (c) i and j can choose their optimal contract sizes with all other

agents given these prices. Then,

P ′ij =
1

Qi;j,j +Qj;i,i

(
eTi Qj(M − P )ej − eTj Qi(M − P )ei

)
+ Pij

Proof. Proof. Let Ai := γiQi for i ∈ [n]. Since Σi � 0 and ΨiΣiΨ
T
i is a principal submatrix,

we know ΨiΣiΨ
T
i is real symmetric and positive definite, and hence its inverse is as well.

Therefore Ai is real symmetric and PSD. (It is not full rank in general, unless Ψi = I).

Since {i, j} is a permitted edge, Ψiej 6= 0 and Ψjei 6= 0. Therefore Ai;j,j = eTj Aiej =

(Ψiej)
T (2ΨiΣiΨ

T
i )−1(Ψiej) > 0 since (2ΨiΣiΨ

T
i )−1 is positive definite. So, Ai;j,j > 0 and

similarly Aj;i,i > 0.

Now, the optimal contracts for agent i under prices P ′ are given by wi = Ai(M −
P ′)Γ−1ei. Note that P ′ = P + (P ′ij − Pij)(eieTj − ejeTi ). Since both i and j maximize their

utility at the same contract size, we have:

wi;j = wj;i

⇒ eTj wi = eTi wj

⇒ eTj (Ai(M − P ′)Γ−1)ei = eTi (Aj(M − P ′)Γ−1)ej

⇒ γje
T
j AiMei − γieTi AjMej = γje

T
j AiP

′ei − γieTi AjP ′ej

The last line can written:

γje
T
j AiPei − γieTi AjPej − (P ′ij − Pij)

(
γje

T
j Aiej + γie

T
i Ajei

)
.
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Hence, we can write (P ′ij − Pij) as:

P ′ij − Pij =
1

γjAi;j,j + γiAj;i,i

(
eTi ΓAj(M − P )ej − eTj ΓAi(M − P )ei

)

=
1

Qi;j,j +Qj;i,i

(
eTi Qj(M − P )ej − eTj Qi(M − P )ei

)

4.6.8 Proof of Theorem 4.2.15

First, we characterize pairwise negotiation dynamics as linear in the price updates.

Theorem 4.6.7. Consider a network setting (µi, γi,Σi,Ψi)i∈[n]. Define Qi as in Theo-

rem 4.2.8. Let sij = 1 if {i, j} is a permitted edge and 0 otherwise. Let L,R ∈ Rn2×n2 be

diagonal matrices such that L(i−1)n+j,(i−1)n+j = Qi;jj +Qj;ii and R(i−1)n+j,(i−1)n+j = sij, and

L† be the pseudoinverse of L. Let ∆(t+1) = P (t+ 1)− P (t), where P (t) is the price matrix at

time step t of pairwise negotiations. Then,

vec(∆(t+1)) = R
(
In2 − ηL†K

)
vec(∆(t)),

where K =
n∑

r=1

(
ere

T
r ⊗Qr +Qr ⊗ ereTr

)
.

Proof. Proof. Let {i, j} be a permitted edge. From Proposition 4.6.6, we obtain:

(∆(t+1))ij =
η

Qi;j,j +Qj;i,i

(
eTi Qj(M − P (t))ej − eTj Qi(M − P (t))ei

)

⇒ (∆(t+1))ij − (∆(t))ij =
η

Qi;j,j +Qj;i,i

(
eTi Qj(−∆(t))ej − eTj Qi(−∆(t))ei

)

=
−η

Qi;j,j +Qj;i,i

(
eTi Qj∆(t)ej − eTj Qi∆(t)ei

)

=
−η

Qi;j,j +Qj;i,i

eTi

(
Qj∆(t) − (Qi∆(t))

T
)
ej

Hence,

(Qi;j,j +Qj;i,i)
(

(∆(t+1))ij − (∆(t))ij

)
= −ηsij · eTi

(
Qj∆(t) + ∆(t)Qi

)
ej.

We assumed that {i, j} was a permitted edge above, but notice the identity is also true for

prohibited {i, j} since both the numerator and denominator become 0, and we can define
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their ratio to be 0. Defining Yij = eTi

(
Qj∆(t) + ∆(t)Qi

)
ej, and recalling the definitions of L

and R from the theorem statement, the above formula becomes

Lvec(∆(t+1) −∆(t)) = −ηRvec(Y ). (4.7)

We show next that vec(Y ) = Kvec(∆(t)), where K is defined in the theorem statement.

Let tr denote the trace operator. Then (eTj ⊗ eTi )vec(Y ) = Yij. Hence,

Yij = eTi

(
Qj∆(t) + ∆(t)Qi

)
ej

= tr
(
eTi Qj∆(t)ej

)
+ tr

(
eTi ∆(t)Qiej

)

= tr
(
eTj ∆T

(t)Q
T
j ei

)
+ tr

(
eTi ∆(t)Qiej

)

= tr
(

∆T
(t)Q

T
j eie

T
j

)
+ tr

(
Qieje

T
i ∆(t)

)

= vec(∆(t))
Tvec(QT

j eie
T
j + (Qieje

T
i )T )

= vec(Qjeie
T
j + eie

T
j Qi)

Tvec(∆(t)),

where we used Qi = QT
i .

Hence we need to show (eTj ⊗ eTi )K = vec(Qjeie
T
j + eie

T
j Qi)

T . Letting δ denote the

Kronecker delta, we obtain:

(eTj ⊗ eTi )K = (eTj ⊗ eTi )

( n∑

r=1

ere
T
r ⊗Qr +Qr ⊗ ereTr

)

=
n∑

r=1

(
δjr(e

T
j ⊗ eTi Qr) + δir(e

T
j Qr ⊗ eTi )

)

= (eTj ⊗ eTi Qj) + (eTj Qi ⊗ eTi )

= (ej ⊗Qjei +Qiej ⊗ ei)T . (4.8)

Now, we observe that ej ⊗Qjei is the vectorization of a matrix whose jth column is Qjei,

i.e., the matrix Qjeie
T
j . Similarly, Qiej ⊗ ei is the vectorization of a matrix whose ith row is

(Qiej)
T , i.e., the matrix eieTj Qi. Hence, (eTj ⊗ eTi )K = vec(Qjeie

T
j + eie

T
j Qi)

T , as desired.
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Plugging into Eq. (4.7),

Lvec(∆(t+1) −∆(t)) = −ηRKvec(∆(t))

⇒ Lvec(∆(t+1)) = Lvec(∆(t))− ηRKvec(∆(t))

⇒ vec(∆(t+1)) =
(
L†L− ηL†RK

)
vec(∆(t))

⇒ vec(∆(t+1)) =
(
R− ηRL†K

)
vec(∆(t))

= R
(
In2 − ηL†K

)
vec(∆(t)),

where we used the facts that (∆t)ij = (∆(t+1))ij = 0 for disallowed edges, and L†L = R and

LR = RL = L, which can be easily confirmed by inspection of these diagonal matrices.

We use Lyapunov theory to analyze the convergence of pairwise negotiation dynamics.

In particular, we need the the discrete Lyapunov equation, also called the Stein equation.

Theorem 4.6.8 (Callier and Desoer (1994) 7.d). For the discrete-time dynamical system

xt+1 = Axt, with xt ∈ Rn, the following are equivalent:

1. The system is globally asymptotically stable towards 0.

2. For any positive definite R ∈ Rn×n, there exists a unique solution X � 0 to the equation

AXAT −X = −R

3. For any eigenvalue λ of A, |λ| < 1.

Pairwise negotiation dynamics can be described as a discrete-time linear system in

vec(∆t), where ∆t is the price difference at time t. Clearly, the system converges iff ∆t

approaches zero. Therefore, we can use the Stein equation to prove global asymptotic stability

conditions.

We will also need the commutation matrix.

Lemma 4.6.9 (Horn and Johnson (1994)). Let Π(n,n) : Rn2 → Rn2 be a permutation matrix

(called the (n, n) commutation matrix) defined as Π(n,n) =
n∑
i=1

n∑
j=1

eie
T
j ⊗ ejeTi . Then for any

A,B ∈ Rn×n, we have

A⊗B = Π(n,n)(B ⊗ A)(Π(n,n))T
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Recall that for a linear operator T that σ(T ) denotes the eigenvalues of T . We are

ready to prove Part 1 of Theorem 4.2.15.

Proposition 4.6.10 (Part 1 of Theorem 4.2.15). Let L,R,K be defined as in Theorem 4.6.7.

For a matrix X ∈ Rn2×n2 let X |R denote the principal submatrix of X corresponding to the

nonzero rows/columns of R. Define η? = min
λ∈σ((L†K)|R)

2
λ
. Then, for any η ∈ (0, η?), vec(∆(t))

is globally asymptotically stable towards 0.

Proof. Proof of Proposition 4.6.10. Let T = R(I − ηL†K). By Theorem 4.6.8, the dynamics

are globally asymptotically stable towards 0 iff for all λ ∈ σ(T ), we have |λ| < 1.

From Eq. (4.8) for a prohibited edge (i, j), we see that (eTj ⊗ eTi )K = 0T , since

Qiej = 0 = Qjei. Hence, K = RK. Taking transposes and noting that both K and R are

symmetric, we find KR = K. Hence, T = R(I − ηL†K) = R(I − ηL†K)R, where we used

R2 = R. Thus, T is zero except for the principal submatrix corresponding to the nonzero

columns of R. So, to apply Theorem 4.6.8, we only require |λ| < 1 for λ ∈ σ(T |R).

For clarity of exposition we will first consider the case where R = I (no prohibited

edges). Then, the eigenvalues of T |R= T equal 1−ηλ, where λ ∈ σ(L−1K) = σ(L−1/2KL−1/2)

by a similarity transformation. Also, K = U1 + U2, where U1 =
n∑
r=1

(
ere

T
r ⊗ Qr

)
and

U2 :=
n∑
r=1

(
Qr ⊗ ereTr

)
. The matrix U1 is block diagonal with positive-definite blocks Qr � 0,

so U1 � 0. By Lemma 5.8.5, U2 is similar to U1 via a permutation matrix, so U2 � 0. Hence,

K � 0, and L−1/2KL−1/2 � 0. So, the eigenvalues of L−1K are real and positive. Hence,

we have convergence iff for all λ ∈ σ(L−1K), we have 1 > (1− ηλ)2 = 1− 2ηλ+ η2λ2. i.e.,

λ < 2/η. Hence, η? = 2/‖L−1K‖ as required.

Now we consider the prohibited edges setting (R 6= I). Here, convergence occurs

iff |1 − ηλ| < 1 for all λ ∈ σ((L†K) |R). Since RL†R = L† and RKR = K, we have

(L†K) |R= L† |R K |R= (L |R)−1K |R. Arguing as above, it suffices to show that K |R� 0.

We claim K |R= V1 + V2 where V1 is a block diagonal matrix with ith block equal to

(2γiΨiΣiΨ
T
i )−1 � 0, and V2 is similar to V1 via Lemma 5.8.5. Hence K |R� 0 and the

expression for η? follows.

Proposition 4.6.11 (Part 2 of Theorem 4.2.15). We define η? as in Proposition 4.6.10, and
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L,R,K, α as in Theorem 4.6.7. Let η ∈ (0, η?). Then,

‖P (t)− P ?‖F ≤
αt

1− α · ‖P (1)− P (0)‖F

Here, P ? is the stable point to which the negotiation converges.

Proof. Proof. Let β denote the greatest eigenvalue in absolute value of R(In2 − ηL†K). From

Theorem 4.6.7, we have ‖∆t+1‖F ≤ |β|‖∆t‖F . Recall that λmax, λmin denote largest and

smallest eigenvalues of the matrix (L†K) |R respectively. Since ‖R‖ = 1, it follows that

|β| = max{|1− ηλmin|, |1− ηλmax|} = α.

Then,

‖P ? − P (t)‖F ≤
∑

i>t

‖∆i‖F

≤ ‖∆t‖F (α + α2 + . . .)

≤ ‖∆t‖F
α

1− α
≤ (αt−1‖∆1‖F )

α

1− α
= ‖∆1‖F

αt

1− α

Since ‖∆1‖F = ‖P (1)− P (0)‖F we are done.

4.6.9 Example of Convergence Conditions and Rate

The following example illustrates Theorem 4.2.15 in the setting of Example 4.6.2

(Appendix 4.6.3).

Example 4.6.12 (Convergence Conditions and Rate). In the setting of Example 4.6.2, we

have

Q1 =




0 0 0
0 2/3 −1/3
0 −1/3 2/3


 , Q2 =




1 0 0
0 0 0
0 0 0


 ,

Q3 =




2 0 0
0 0 0
0 0 0


 ,
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Hence

K =




0 0 0 0 0 0 0 0 0
0 2

3
+ 1 −1

3
0 0 0 0 0 0

0 −1
3

2
3

+ 2 0 0 0 0 0 0
0 0 0 1 + 2

3
0 0 −1

3
0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1

3
0 0 2 + 2

3
0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




Also, L is the diagonal matrix with Li,i = Ki,i for i ∈ [9]. Since the permitted edges

are {(1, 2), (1, 3)}, R = {2, 3} and so (L†K)R =

[
1 −1

5
−1
8

1

]
. Hence λmin = 1− 1

2
√

10
, λmax =

1 + 1
2
√

10
, and η∗ = 2

1+(40)−1/2 ≈ 1.727.

It follows that pairwise negotiations with η ∈ (0, 2
1+(40)−1/2 ) are globally asymptotically

stable. Suppose that η = 0.99. Then α = (1− η · (1− 1
2
√

10
)) ≈ 0.17. Hence after t rounds,

the distance of P (t) to P ∗ shrinks by a factor of ≈ 0.17t

0.83
.

4.6.10 Proof of Theorem 4.2.17

We will use a series of Lemmas to reduce the result of Theorem 4.2.17 to a matrix

concentration inequality in each of the Σ̂i.

Lemma 4.6.13. Let η̂∗, η∗ be as in Theorem 4.2.17. Suppose all edges are permitted.

Suppose that for all i ∈ [n], we have ‖Σ̂−1
i − Σ−1‖ = o(1). Then, η̂? > η?(1− o(1)).

Proof. Proof. Let L̂, K̂ ∈ Rn2×n2 be as in Theorem 4.2.17, but built using Σ̂1, . . . , Σ̂n instead

of Σ, . . . ,Σ. Let L,K be defined similarly to L̂, K̂ but using Σ in place of all Σ̂i.

Then η̂∗ := 2

maxσ(L̂−1K̂)
and η∗ := 2

maxσ(L−1K)
.

Let εL, εK ∈ Rn2×n2 be such that L̂−1 = L−1 + εL and K̂ = K + εK . We will bound

‖εL‖, ‖εK‖.

Let Qi, Q̂i be defined as in Theorem 4.2.8, so Qi := (2γiΣ)−1 and Q̂i := (2γiΣ̂i)
−1.

Let α = max
i∈[n]
‖Q̂i −Qi‖. Notice ‖Γ−1‖ = O(1), so α = o(1).

First, since L is diagonal, ‖εL‖ ≤ max
i,j∈[n]

(
(Q̂i;jj−Qi;jj)+(Q̂j;ii−Qj;ii)

)
≤ 2 max

i,j∈[n]

(
Q̂i;jj−

Qi;jj

)
≤ 2 max

i∈[n]
‖Q̂i −Qi‖ = 2a.
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Second, let K̂ := Û1 + Û2 where Û1, Û2 are defined analogously to U1, U2 in the proof

of Theorem 4.2.15. Letting Π be the (n, n) commutation matrix of Lemma 5.8.5, we know

Û2 = ΠÛ1ΠT , so ‖εK‖ ≤ 2‖Û1 − U1‖. Since U1, Û1 are block diagonal with ith blocks Qi, Q̂i

respectively, it follows ‖Û1 − U1‖ = max
i∈[n]
‖Q̂i −Qi‖ = α. Hence ‖εK‖ ≤ 2α.

Third, notice that since ‖Σ‖ and ‖Γ‖ are assumed to beO(1) that ‖L−1‖ = O(maxi ‖Qi‖) =

O(1) and ‖K‖ = O(maxi ‖Qi‖) = O(1). So,

‖L̂−1K̂ − L−1K‖2 ≤ ‖εL‖‖K‖

+ ‖L−1‖‖εK‖+ ‖εL‖‖εK‖

≤ 2α(‖K‖+ 2α)

+ 4α(‖L−1‖+ α)

= 4α(‖K‖+ ‖L−1‖) + 8α2

≤ o(1)

We conclude that ‖L̂−1K̂‖2 ≤ ‖L−1K‖2 +o(1), so η̂∗ ≥ η∗

1+(o(1)/‖L−1K‖) ≥ (1−o(1))η∗.

Lemma 4.6.14. Suppose for i ∈ [n], we have δi := ‖Σ̂i−Σ‖ = o(1). Then ‖Σ̂−1
i −Σ−1

i ‖ = o(1).

Proof. Proof. Weyl’s inequality implies that λmin(Σ̂i) ≥ λmin(Σ)− ‖Σ̂i − Σ‖. Therefore,

‖Σ̂−1
i ‖ =

1

λmin(Σ̂i)

≤ 1

λmin(Σ)− δi
=

1

λmin(Σ)

(
1 +

δi
λmin(Σ)

+O
(( δi

λmin(Σ)

)2))

= ‖Σ−1‖(1 + o(1))

⇒ ‖Σ̂−1
i − Σ−1‖ = ‖Σ−1(Σi − Σ̂i)Σ̂

−1
i ‖

≤ (1 + o(1))‖Σ−1‖2δi

≤ o(1)

The last step follows from the fact ‖Σ−1‖ = O(1).

The hypothesis of Lemma 4.6.14 follows from a standard argument on the concentration

of random covariance matrices.
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Theorem 4.6.15. Under the setting of Theorem 4.2.17, with probability at least 1− e−Ω(n),

we have ‖Σ̂i − Σ‖ = o(1) for all i ∈ [n].

Proof. Proof of Theorem 4.6.15. Let X1, . . . ,Xm
iid∼ N(0,Σ) be the samples. Let µ̂ =

1
m

m∑
i=1

Xi, and Σ̃i := 1
m

m∑
i=1

XiX
T
i . Then, Σ̂i = m/(m− 1) · (Σ̃i − µ̂µ̂T ). Hence,

‖Σ̂i − Σ‖ ≤ m/(m− 1) ·
(
‖Σ̃i − Σ‖+ ‖µ̂µ̂T‖

)
= m/(m− 1)

(
‖Σ̃i − Σ‖+ ‖µ̂‖2

)
.

Now, µ̂ ∼ N(0, 1
m

Σ), so
√
mΣ−1/2µ̂ ∼ N(0, In). By Vershynin (2018a) (4.7.3 and 2.8.3), there

exist constants c, c2 > 0 such that for any u, ε > 0,

P
[
‖Σ̃i − Σ‖2 ≤ c‖Σ‖2

(√
n+ u

m
+
n+ u

m

)]

≥ 1− 2e−u,

P
[∣∣∣∣

1

n
‖√mΣ−1/2µ̂‖2

2 − 1

∣∣∣∣ ≤ ε

]

≥ 1− 2e−c2nmin(ε,ε2)

Now we set ε > 1 and u = c3n for some constant c3 > 0. Then, when m = dn log ne, we have

(n+ u)/m = o(1) Then, with probability at least 1− 2e−c3n − 2e−c2εn, we have

‖Σ̃i − Σ‖2 ≤ ‖Σ‖ · o(1),

and ‖Σ−1/2µ̂‖2
2 ≤

(1 + ε)n

m

⇒ ‖µ̂‖2 ≤ (1 + ε)n‖Σ‖
m

= ‖Σ‖ · o(1),

⇒‖Σ̂i − Σ‖ ≤ ‖Σ‖ · o(1).

Choosing large enough c3 and ε, this statement holds for all i ∈ [n] with probability greater

than 1− elogn−c4n = 1− e−Ω(n).

Theorem 4.2.17 follows easily.

Proof. Proof of Theorem 4.2.17 When all edges are permitted, the proof follows from Theo-

rem 4.6.15, Lemma 4.6.13, and Lemma 4.6.14.

If there are prohibited edges, then we must use matrix concentration to bound

maxσ(L̂†K̂) instead of maxσ(L̂−1K̂). Notice that prohibited edges have the effect of simply
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zeroing out certain rows and columns of Qi, so that Qi := Ψi(2γiΨ
T
i ΣiΨi)

−1ΨT
i , rather than

(2γiΣi)
−1. Therefore, we can use Theorem 4.6.15 to bound ‖ΨT

i Σ̂iΨi − ΨT
i ΣΨi‖ for all i,

and then prove the appropriate analogue of Lemma 4.6.13. In particular, the sample size

requirement remains the same.

4.6.11 Proof of Proposition 4.2.19

Recall that in Assumption 4.2.18 we assumed that Mij(t) varies independently accord-

ing to a Brownian motion with the same parameters for all (i, j). To avoid ambiguity, we

recall the definition of a standard Brownian motion as follows.

Definition 4.6.16 (Brownian Motion). For d ≥ 1, a d-dimensional Brownian motion with

scale parameter σ > 0 is a stochastic process {Xt : t ≥ 0} such that Xt ∈ Rd for all t, the

components of Xt are independent, and for all j ∈ [d],

i) The process {(Xt)j : t ≥ 0} has independent increments.

ii) For r > 0, the increment (Xt+r)j − (Xt)j is distributed as N(0, rσ2).

iii) With probability 1, the function t 7→Xt is continuous on [0,∞).

We can derive the SDP of Proposition 4.2.19 as follows.

Proposition 4.6.17. Under Assumption 4.2.18, the maximum likelihood estimator for Σ is

the unique Σ � 0 such that trΣ = 1 and

• Consistency: For all t ∈ [T ],

W (t)Σ + ΣW (t) =
1

2
(M(t) +M(t)T )

for some M(1),M(2), . . .M(t)

• Minimum mean shift: The resulting M(1), . . . ,M(T ) minimize the objective

T−1∑

t=1

‖M(t+ 1)−M(t)‖2
F
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Proof of Proposition 4.6.17.

P(M(1), . . . ,M(T ) | W (1), . . . ,W (T ),Σ)

∝P(W (1), . . .W (T ) |M(1), . . . ,M(T ),Σ) · P(M(1), . . . ,M(T ) | Σ)

=

( T∏

t=1

1W (t)Σ+ΣW (t)=0.5(M(t)+M(t)T )

)
·
( T−1∏

t=1

P(M(t+ 1)−M(t))

)

=

( T∏

t=1

1vec(W (t))=0.5(Σ⊗I+I⊗Σ)vec(M(t)+M(t)T )

)
·
( T−1∏

t=1

exp(−‖vec(M(t+ 1)−M(t))‖2

2σ2
)

)
,

where the first step follows from Bayes’ Rule, the second step from Corollary 4.6.1, and the

third from Assumption 4.2.18. The theorem follows from the observation that for any matrix

X, we have ‖vec(X)‖2 = ‖X‖2
F .

The proof of Proposition 4.2.19 follows easily.

Proof. Proof of Proposition 4.2.19. By Proposition 4.6.17, we obtain the SDP

min
Σ

T−1∑

t=1

‖M(t+ 1)−M(t)‖2
F

∀t ∈ [T ] : W (t)Σ + ΣW (t) =
1

2
(M(t) +M(t)T )

under the assumptions of Σ � 0 and tr(Σ) = 1. Since the Frobenius norm is invariant under

transposes, we have

T−1∑

t=1

‖M(t+ 1)−M(t)‖2
F ∝

T−1∑

t=1

‖(M(t+ 1) +M(t+ 1)T )− (M(t) +M(t)T )‖2
F .

We can replace M(t) +M(t)T with 2W (t)Σ + 2ΣW (t) for all t ∈ [T ] to obtain the equivalent

objective function
T−1∑
t=1

‖(W (t + 1) −W (t))Σ + Σ(W (t + 1) −W (t))‖2
F (up to a constant).

This substitution enforces the fixed point equation W (t)Σ + ΣW (t) = 1
2
(M(t) +M(t)T ) for

all t ∈ [T ], so the conclusion follows.

Remark 4.6.18 (The prohibited edges setting.). Proposition 4.2.19 generalizes straightfor-

wardly to the setting of prohibited edges. Let E denote the set of permitted edges. Then

minimum mean shift assumption is equivalent to minimizing
T−1∑
t=1

∑
{i,j}∈E

(
M(t+1)+M(t+1)T−

M(t)−M(t)T
)2

ij
. In words, the objective just zeroes out prohibited edges, since mean estimates

161



for prohibited edges have no effect on the network. For a network setting (µj,Σ, γj,Ψj)j∈[n],

some algebra gives M(t)ij = eTi 2γj(Ψ
T
j Ψj)Σ(ΨT

j Ψj)W (t)ej. Notice ΨT
j Ψj ∈ Rn is a diagonal

matrix with (ΨT
j Ψj)ii = 1 if {i, j} ∈ E and zero otherwise. Therefore, it is clear that upon

substitution, the objective is an SDP in Σ with the same constraints.

4.6.12 Proof of Theorem 4.3.1

Proof. Proof of Theorem 4.3.1. Note that the Hessian of Fi(wi) is a positive diagonal matrix

due to the conditions on Fi(.). So, any stationary point is a local maximum. Hence, it suffices

to show the existence of a unique stationary point.

Let R(W ) be an n × n matrix whose (i, j)th entry R(W )ij := fij(Wij). If a stable

point (W,P ) exists, it must satisfy W = W T , P = −P T , and

M − P = 2ΣWΓ +R, (4.9)

following the same steps as the proof for Corollary 4.6.1. Adding this equation to its transpose,

the stable point must satisfy

(M +MT )/2 = (ΣWΓ + ΓWΣ) + (R(W ) +R(W )T )/2.

For a stable point, [R(W )+R(W )T ]ij = fij(Wij)+fji(Wji) = (fij +fji)(Wij), usingW = W T .

Define S(W ) to be an n× n matrix with S(W )ij = (1/2) · (fij + fji)(Wij). Hence, the stable

point must satisfy

(M +MT )/2 = S(W ) + (ΣWΓ + ΓWΣ) (4.10)

⇔ vec((M +MT )/2) = vec(S(W )) + (Γ⊗ Σ + Σ⊗ Γ)︸ ︷︷ ︸
Q

vec(W ).

Note thatQ is positive-definite (from the proof of Corollary 4.6.1), and each entry of vec(S(W ))

is a function of the corresponding entry of vec(W ). By Theorems 1 and 2 of Sandberg and

Willson (1972), Eq. (4.10) has a unique solution if (1) for all diagonal D � 0, det(D+Q) > 0

and (2) for any x,y ∈ Rn2 such that x = Qy, we have xTy ≥ 0. The first condition holds

because det(D+Q) = det(D1/2(I+D−1/2QD−1/2)D1/2) = det(D)·det(I+D−1/2QD−1/2) > 0.

The second condition is true because xTy = yTQy ≥ 0. Hence, Eq. (4.10) has a unique

solution W.
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We now show that this solution satisfies the conditions of the stable point, that is,

W = WT , and there exists a skew-symmetric P which satisfies Eq. (4.9). Observe that

[S(W)T ]ij = S(W)ji

= (1/2) · (fij + fji)(Wji)

= S(WT )ij,

so S(W)T = S(WT ). Taking the transpose of Eq. (4.10) and using Σ = ΣT , Γ = ΓT , and

S(W)T = S(WT ), we find

(M +MT )/2 = (ΣWTΓ + ΓWTΣ) + S(WT ).

But since there is only one solution to Eq. (4.10), we must have W = WT .

Finally, we choose

P = M − 2ΣWΓ−R

⇒ P + P T = (M +MT )− 2(ΣWΓ + ΓWΣ)− 2S(W )

= 0,

using the fact that W = WT is a solution for Eq. (4.10). Hence, this choice of P is both

skew-symmetric and satisfies Eq. (4.9).

4.6.13 Proof of Theorem 4.3.3

Proof. Proof of Theorem 4.3.3. 1. Let (λi,vi) denote the ith eigenvalue and eigenvector of

Γ−1/2ΣΓ−1/2, and let Vij = eTi vj. By Corollary 4.6.1,

W = Γ−1/2

( n∑

s=1

n∑

t=1

vTs Γ−1/2(M +MT )Γ−1/2vt
2(λr + λs)

vsv
T
t

)
Γ−1/2

⇒ ∂Wij

∂Mk`

= eTi Γ−1/2

( n∑

s=1

n∑

t=1

vTs Γ−1/2(eke
T
` + e`e

T
k )Γ−1/2vt

2(λs + λt)
vsv

T
t

)
Γ−1/2ej

=
1

2
√
γiγjγkγ`

( n∑

s=1

n∑

t=1

vTs (eke
T
` + e`e

T
k )vt

(λs + λt)
(eTi vs)(v

T
t ej)

)

=
1

2
√
γiγjγkγ`

n∑

s=1

n∑

t=1

(
VisVksVjtV`t + VisV`sVjtVkt

λs + λt

)
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This proves Eq. (4.3). If i = k, j = `, we have:

∂Wij

∂Mij

= (2γiγj)
−1




n∑

s=1

n∑

t=1

V 2
isV

2
jt + VisVjsVjtVit

λs + λt︸ ︷︷ ︸
Zst




= (4γiγj)
−1

(
n∑

s=1

n∑

t=1

Zst +
n∑

t=1

n∑

s=1

Zts

)

= (4γiγj)
−1

n∑

s=1

n∑

t=1

(Zst + Zts)

= (4γiγj)
−1

n∑

s=1

n∑

t=1

(VisVjt + VjsVit)
2

λr + λs
> 0.

Hence, Wij is monotonically increasing with respect to Mij.

2. This follows from Corollary 4.6.1.

3. By Corollary 4.6.1, vec(W ) = γ−1(Σ ⊗ I + I ⊗ Σ)−1vec(M+MT

2
). Let K =

γ(Σ⊗I+I⊗Σ) and K ′ = γ(Σ′⊗I+I⊗Σ′). Since Σ′ � Σ it follows that K ′ � K. Therefore

K−1 � (K ′)−1.

So, since vec(W ′−W ) = ((K ′)−1−K−1)vec(M+MT

2
), we immediately obtain 1

2
vec(M+

MT )Tvec(W ′−W ) < 0. Since W,W ′ are symmetric it follows that vec(MT )Tvec(W ′−W ) =

vec(M)Tvec(W ′ −W ). So we have vec(M)Tvec(W ′ −W ) < 0.

Since vec(M)Tvec(W ′ −W ) = tr(MT (W ′ −W )), the conclusion follows.

4.6.14 Hardness of Source Detection

We begin by defining
∣∣∣∣
∂Wij

∂Mk`

∣∣∣∣
approx

:=
|VinVknVjnV`n|

2λn
. (4.11)

This approximates the right hand side of Eq. (4.3) when the term corresponding to the

smallest eigenvalue λn dominates the sum. We now show that if the corresponding eigenvector

vn is random, source detection becomes difficult.

Proposition 4.6.19 (Hardness of Source Detection). Suppose vn is Haar-distributed, that

is, vn is distributed uniformly on the unit sphere Sn−1. Then, if Σ = V ΛV T and Γ = I,

P
[

max
i,j∈[n]:(i,j)6=(k,`)

∣∣∣∣
∂Wij

Mk`

∣∣∣∣
approx

<

∣∣∣∣
∂Wk`

Mk`

∣∣∣∣
approx

]
≤ O

(
1

n

)
.
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Proof. Proof of Proposition 4.6.19. Without loss of generality we can set k = 1, ` = 2

(the analysis of k = ` is identical). Notice that
∣∣∣∂Wij

Mk`

∣∣∣
approx

is maximized at the (i, j) that

maximizes |VinVjn|.

Now, consider (i, j) ∈ {(1, 2), (3, 4), . . . , (n− 1, n)}. Notice the distribution of vn is

permutation-invariant by assumption. Hence the joint distribution of (Vin, Vjn) is the same

for all such pairs (i, j). Hence the distribution of |VinVjn| is also the same for all such (i, j).

Therefore,

P
[

arg max
(i,j)∈{(1,2),(3,4),...,(n−1,n)}

∣∣∣∣
∂Wij

M12

∣∣∣∣
approx

= (1, 2)

]
≤ O(1/n).

4.6.15 Proof of Proposition 4.4.2

Proof. Proof of Proposition 4.4.2. Let H = 1
2
(M +MT ). The fixed point equation for W is

given by Corollary 4.6.1 as ΣWΓ+ΓWΣ = H. Vectorization implies (Γ⊗Σ+Σ⊗Γ)vec(W ) =

vec(H). Let X ∼ Y denote that a pair of random variables X, Y are identically distributed.

We want to show ΠTWΠ ∼ W . Vectorization gives vec(ΠTWΠ) = (ΠT ⊗ ΠT )vec(W ). Let

P = (ΠT ⊗ ΠT ) and K = (Γ⊗ Σ + Σ⊗ Γ) for shorthand.

In this notation, we want to show that PK−1vec(H) ∼ K−1vec(H). Since P is a

permutation, we have PK−1vec(H) = PK−1P TPvec(H) = (PKP T )−1Pvec(H). Since the

collections of random variables {εi}i and {ε′θi,j}i,j are independent, we know vec(H) and

K are independent. So to show (PKP T )−1Pvec(H) ∼ K−1vec(H) it suffices to show that

Pvec(H) ∼ vec(H) and PKP T ∼ K.

Notice Pvec(H) = vec(ΠTHΠ). Hence, we want to show ΠTHΠ ∼ H, which holds iff

ΠT (M +MT )Π ∼M +MT . Notice that ΠTMTΠ = (ΠTMΠ)T , so if ΠTMΠ ∼M then we

obtain ΠTMTΠ ∼MT as well. It suffices to show ΠTMΠ ∼M .

Similarly, we can simplify PKP T = ΠTΣΠ⊗ ΠTΓΠ + ΠTΓΠ⊗ ΠTΣΠ. It suffices to

show ΠTΓΠ ∼ Γ and ΠTΣΠ = Σ.

We are left to show that ΠTΣΠ = Σ and ΠTAΠ ∼ A for A ∈ {Γ,M}.
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Proof of ΠTΣΠ = Σ. Let i, j ∈ [n]. Then (ΠTΣΠ)ij = Σπ(i),π(j) = g(θπ(i), θπ(j)).

Since π only commutes members within communities, g(θπ(i), θπ(j)) = g(θi, θj) = Σij. So

ΠTΣΠ = Σ.

Proof of ΠTΓΠ ∼ Γ. Notice ΠTΓΠ and Γ are both diagonal. Let i ∈ [n]. Then

(ΠTΓΠ)ii = Γπ(i),π(i) = h(θπ(i)) + επ(i) = h(θi) + επ(i). Since θi = θπ(i), we know εi ∼ επ(i). The

conclusion follows.

Proof of ΠTMΠ ∼ M . Let i, j ∈ [n]. Then (ΠTMΠ)ij = Mπ(i),π(j) = f(θπ(i), θπ(j)) +

ε′θπ(i),π(j) = f(θi, θj) + ε′θi,π(j). Since θj = θπ(j), we know that ε′θi,π(j) ∼ ε′θi,j , and the conclusion

follows.

4.6.16 Proof of Theorem 4.4.4

Proof. Proof of Theorem 4.4.4. First, consider the network settings S and S ′. Let Γ ∈ Rn×n

be a diagonal matrix with Γi,i = γi; define Γ′ similarly under S ′. Let the corresponding

networks be W and W ′, and let ∆W = W ′ −W and ∆Γ = Γ′ − Γ. By Corollary 4.6.1, we

have

ΣWΓ + ΓWΣ =
M +MT

2

= ΣW ′Γ′ + Γ′W ′Σ

⇒ M +MT

2
= Σ(W + ∆W )(Γ + ∆Γ) + (Γ + ∆Γ)(W + ∆W )Σ

= ΣWΓ + ΓWΣ + Σ∆WΓ + Γ∆WΣ + ΣW∆Γ + ∆ΓWΣ

+ Σ∆W∆Γ + ∆Γ∆WΣ

⇒ Σ∆WΓ + Γ∆WΣ = −(ΣW∆Γ + ∆ΓWΣ + Σ∆W∆Γ + ∆Γ∆WΣ)

= −(ΣW ′∆Γ + ∆ΓW
′Σ) (4.12)

Next, consider S versus S†. Suppose that M † has columns µ†1, . . . ,µ†n and let ∆M =

M †−M . Let W † be the fixed point network under S†, given by ΣW †Γ + ΓW †Σ = M†+(M†)T

2
.

Let ∆†W = W † −W . Then a similar argument gives:

∆M + ∆T
M

2
= Σ∆†WΓ + Γ∆†WΣ (4.13)
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Therefore, from Eq (4.12) and (4.13), it follows that W ′ = W † if

∆M + ∆T
M

2
= −(ΣW ′∆Γ + ∆ΓW

′Σ).

Hence, W ′ = W † if we set ∆M = −ΣW ′∆Γ.

It remains to show that M † differs from M only in columns corresponding to J .

Suppose that i 6∈ J . Then γi = γ′i, so ∆Γei = 0. We conclude that ∆Mei = 0 and hence

Mei = M †ei.

4.6.17 Additional Discussion of Theorem 4.3.1

Theorem 4.3.1 considers budget constraints or penalties of the form Fi(wi), where

wi is the vector of contracts for agent i. Consider the more general setting of Fi(wT
i Pei) or

Fi(wi � Pei). Using the techniques from Sandberg and Willson (1972), we cannot prove the

existence and uniqueness of stable points in the general setting, except in trivial cases.

To see this, note that we must impose conditions on the first derivative fji = ∂Fi
∂Wij

of

the penalty function Fi. Specifically, we need Sij := fij + fji to be a function of Wij alone.

But if Fi were to depend on P , so would fij . Each entry of P depends on all entries of W in

general, not just Wij. Hence, we cannot handle general forms of Fi(W,P ).

In the special case where Fi(W,P ) := wT
i Pei, we have Sij = Pij + Pji = 0, and

Theorem 4.3.1 still applies. However, this case is trivial since it amounts to modifying the

payments matrix by a factor of 2:

agent i’s utility gi(W,P ) := wT
i (µi − Pei)− γi ·wT

i Σiwi − Fi(wi)

= wT
i (µi − 2Pei)− γi ·wT

i Σiwi.

If we instead have a positive penalty only when the total payment is positive (say, Fi(W,P ) :=

max(0,wT
i Pei)), the approach no longer works.

4.7 Experimental Details
4.7.1 Fama-French Stock Market Data

We use the Fama-French value-weighted asset returns dataset, for 96 assets over 625

months (Fama and French, 2015).
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4.7.2 OECD International Trade Data

We use international trade statistics from the OECD to get quarterly measurements of

bilateral trade between 46 large economies, including the top 15 world nations by GDP OECD

(2022). The data are available at the OECD Statistics webpage (https://stats.oecd.org/).

The data are measured quarterly from Q1 2010 to Q2 2022. We take the sum of trade flows

i→ j and j → i to measure the weight of an edge {i, j}.

To obtain the corresponding Σ, we run our inference procedure (Section 4.2.4). Since

there is no data for within-country trade, the network has no self-loops (Wii = 0). So we

modify the inference according to Remark 4.6.18 in Appendix 4.6.11.

4.7.3 Outlier Detection Simulation

The experiments in Figure 4.6 proceed as follows. Fix a number of communities

k and number of firms n. Fix a value of σ > 0. For us, k = 2, n ∈ {20, 100, 300}, and
σ ∈ {σ1, . . . , σ10}, where the σi are logarithmically spaced on the interval [0.1, 1], so that

σ ∈ {0.1, 0.12915497, 0.16681005,

0.21544347, 0.27825594, 0.35938137,

0.46415888, 0.59948425, 0.77426368, 1.0}

For a setting of n, k, σ, we perform the following simulation m = 500 times.

Generate communities. Generate the community membership matrix Θ ∈ {0, 1}n×k

with rows independently and uniformly at random from {e1, . . . , ek}.

Generate the network setting. The deterministic functions f, g, h for M,Σ,Γ respec-

tively are as follows. First f(θ1, θ2) = f(θ2, θ1) = 1 and f = 0 otherwise. Next, let G ∈ Rk×k

be the matrix Gij = g(θi, θj). Then G is generated from a normalized Wishart distribution

centered at Ik and with 5 degrees of freedom. Finally, h(θi) = 1 for all i.

The noise variables for agent beliefs are as follows. Sample i.i.d. εi according to a

N(0, σ2) distribution truncated to [−0.5, 0.5] for all i. Sample ε′θi,j
iid∼ N(0, σ2) for all i, j.

Designate an outlier. Set the the noise parameter ε1 = −0.5 for firm 1 (the risk-seeker),

so as σ → 0, γ1 gets further separated from all other γi.
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Outlier detection simulation. Then for a random firm i such that θi 6= θ1, we test

whether the outlier ĵ := arg max
j:θj=θ1

|Wi,j| is equal to the true outlier firm 1.

Collate results. Once the m = 500 runs are completed for a single setting of n, k, σ,

we obtain an estimate p̂ for the probability of successful deviator detection at this setting

of parameters. We plot a confidence interval [p− 2
√

p̂(1−p̂)
m

, p + 2
√

p̂(1−p̂)
m

]. This is plotted

on the y-axis. The x-axis quantifies how much γ1 deviates from the mean, in terms of the

number of standard deviations of the truncated normal distribution εi.
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Chapter 5: Strategic Negotiations in Endogenous
Network Formation

5.1 Introduction

In computer science and economics, network games (Tardos, 2004; Kearns et al., 2001)

model pairwise interactions of agents. Many important processes can be modeled as a network

game. For example, rumors and information spread in a social network via interactions

between pairs of friends De et al. (2016); Gaitonde et al. (2020b); Chen and Rácz (2021b).

Similarly, infectious diseases can spread through a physical contact network via face-to-face

interactions Huang and Zhu (2022).

We study network games involving the formation of bilateral contracts between

agents such as firms, nations, or individuals. Networks of contracts are widely studied, with

applications to supply chain modeling (Acemoglu and Azar, 2020; Elliott et al., 2022b),

international trade (Jalan et al., 2024a), and financial contagion (Eisenberg and Noe, 2001;

Feinstein et al., 2018). For example, the US over-the-counter (OTC) market for financial

derivative products (e.g. credit default swaps) is a network of bespoke bilateral contracts

among large firms with a notional value of over 600 trillion USD as of 2022 (ISDA, 2023).

Despite their significance, financial networks are not fully understood (Glasserman and Young,

2016).

Network games, both for contract networks and for other settings such as social

networks, typically assume that agents play utility-maximizing actions based on the actions

of their neighbors. These models assume honesty, meaning that agents play according to

the pre-specified dynamics of the network game. For example, previous work on contract

networks assumes that agents form edges by reporting the true parameters of their utility

functions in negotiations (Acemoglu and Azar, 2020; Gaitonde et al., 2020b; Elliott et al.,

2022b; Jalan et al., 2024a). However, recent works show that agents can manipulate network

games by acting strategically. For example, agents in a social network can deviate from

ordinary opinion dynamics to spread misinformation (Gaitonde et al., 2020b; Chen and Rácz,

The content of this chapter is under review at the 26th ACM Conference on Economics and Computation
(ACM EC 2025), and can be cited as Jalan and Chakrabarti (2024).
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2021b). More generally, strategic agents can manipulate the dynamics of a known game for

various purposes (Galeotti et al., 2020; Kolumbus and Nisan, 2022a; Kolumbus et al., 2024),

such as maximizing utility, gaining information, or deceiving others.

All of these works assume that only one actor is strategic. Interactions between

several strategic agents are not explored. We present, to our knowledge, the first results for a

multi-agent network formation game with an arbitrary set of strategic agents.

In our model, n heterogeneous agents negotiate to form a network of bilateral contracts.

Each agent wants contracts to maximize their utility (Eq. (5.1)), which follows the classical

mean-variance utility model for a portfolio of contracts (Markowitz, 1952). But contract

details must be agreed to by both parties, so they negotiate during network formation. An

arbitrary subset S of the n agents negotiates strategically, and the rest are honest. Specifically,

each strategic agent chooes a negotiating strategy privately, before negotiations. Then, during

network formation they must play according to this strategy, and cannot adjust in response

to others. For this game among the strategic actors, we ask the following question:

(Q1) How should each agent negotiate optimally in a network?

At first sight, it is not obvious that an optimal strategy exists, especially when there

are several strategic agents. For instance, consider two hedge funds competing against each

other to get a contract with an investor. Each fund wants to offer more favorable terms than

the other, but must pick its position before seeing the other fund’s choice. This uncertainty

makes the problem even more difficult.

Next, even for a single strategic agent, optimal negotiations requires some knowledge

of other agents’ preferences. This leads to our second question:

(Q2) How can an agent learn the parameters needed for optimal negotiations?

If the network is changing in time (e.g. due to agents entering and leaving), then before

entering the network agents may observe an equilibrium from previous strategic negotiations.

But, they cannot directly infer other agents’ beliefs since the network was not formed

truthfully. Moreover, because i and j account for variance in their utility, a contract between

(i, j) can depend on depend on j’s contract with k, which depends on k’s contract with `,

and so on. This makes learning from previously observed edges difficult.
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Our main contributions are as follows.

Efficient algorithm to find Nash equilibria. Our main result is an efficient

algorithm (Algorithm 4) to find the optimal negotiating positions for an arbitrary set of

strategic agents, or report when no optimal solution exists (Theorem 5.3.7). We show that

all Nash equilibria are pure, and give extensions of Algorithm 4 to the case where agents are

uncertain about the preferences of their neighbors.

Learning algorithm for agents. Given the edges formed from previous strategic

negotiations, we present an algorithm (Algorithm 5) to learn the other agents’ true beliefs

and the set S of strategic agents. Our algorithm is robust to strategic agents playing

non-Nash-optimal strategies to fool the learner.

Analysis of international trade networks. We simulate Nash-optimal strategic

negotiations on real-world international trade data OECD (2022). Our experiments confirm

that the utilities of agents, as well as the “Price of Strategy” (analogous to the Price of

Anarchy), are sensitive to the set of strategic agents. We also show that our learning algorithm

recovers the parameters needed for strategic negotiations for a broad range of networks.

5.2 Background and Related Work

Network games are widely studied in both economics (Glasserman and Young, 2016;

Elliott and Golub, 2022) and computer science (Leng et al., 2020a; Rossi et al., 2022). Our

work closely relates to endogenous network formation models for economic networks (Acemoglu

and Azar, 2020; Sadler and Golub, 2021; Jalan et al., 2024a). Note that the contracts in

our model can include but are not limited to principal-agent contracts, which are studied in

their own right (Papireddygari and Waggoner, 2022; Alon et al., 2023). As in these works on

network formation, we study stable points of a network formation process in which each agent

wants to form edges to maximize its utility. But, our work focuses on the effects of strategic

manipulation of the network formation process, and learning algorithms that observe the

outcomes of this manipulated process.

Prior work on steering the outcomes of network games (Galeotti et al., 2020; Gaitonde

et al., 2020b; Chen and Rácz, 2021b; Wang and Kleinberg, 2024) and on learning from

observations of network games (Irfan and Ortiz, 2014; Garg and Jaakkola, 2016; De et al.,
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2016; Leng et al., 2020a; Rossi et al., 2022) largely consider games with one-dimensional

action spaces and one strategic actor. Instead, we focus on consider arbitrary sets of strategic

actors. Moreover, each of the n agents in our model has an n-dimensional action space.

This results in a vector of contracts wk ∈ Rn for each agent k. The correlations between

entries of wk can have strategic consequences, as we show in Section 5.4. Some recent works

study multiple strategic actors in repeated auctions (Kolumbus and Nisan, 2022b) and Fisher

markets with linear utilities Kolumbus et al. (2024). Our work has a similar thrust, but we

focus on network formation.

The effect of strategic behavior is often studied through the Price of Anarchy (Rough-

garden, 2005, 2015; Christodoulou et al., 2017; Gkatzelis et al., 2022), which measures the

welfare under a strategic equilibrium versus welfare under a socially optimal equilibrium. We

similarly give a worst-case upper bound on the “Price of Strategy” (Proposition 5.4.2), which

is the analogue of the Price of Anarchy in our setting. However, in addition to overall welfare,

we also examine how the set of strategic agents affects individual welfare, and find that the

behavior is complex. For example, there are strategic sets S ⊆ [n] in which all members of S

are worse off than if they had all negotiated honestly. This sensitivity to S is similar in spirit

to Christodoulou and Sgouritsa (2019), although there is no central designer in our setting

(see Remark 5.3.10).

Moreover, the the data used in our learning algorithms are strategically manipulated

by agents, resulting in a “strategic source.” Recently, there has been a growing interest in

developing learning algorithms for such sources. Chen et al. (2020a) study strategy-awareness

for linear classification, but assume that agents can only misreport data up to an ε-ball. Our

setting is closer to that of Ghalme et al. (2021), who show that agents who are evaluated by a

third-party classifier (e.g. for approval for a bank loan) can strategically modify their features

to game the classifier, even if the classifier used is strategy-robust in the sense of Hardt

et al. (2016). Harris et al. (2023) give a Õ(n(d+1)/(d+2))-regret algorithm for online binary

classification against n strategic agents with d-dimensional features, but in a linear reward

model. Finally, Cai et al. (2015) give a mechanism to encourage strategic data providers to

report truthful data, but in a model where the data providers have no incentive to hurt the

classifier’s accuracy (e.g. crowdsourcing).

Next, we discuss notation and present a background on network formation without
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strategic agents.

Background: network formation without strategy. We use a network model with

side-payments between agents Jackson and Wolinsky (2003) and mean-variance utility, which

is a widely used model of risk-aware utility Harrison and Qin (2009); Li et al. (2014); Simaan

(2014); Zhang et al. (2021); Ma et al. (2023b). This network model has been shown to provide

closed-form solutions for truthful network formation Jalan et al. (2024a). We summarize this

model below.

Let W = W T ∈ Rn×n denote an undirected weighted network of contracts between

n agents, with Wij being the size of the contract between i and j and Wii representing

self-investment. A negative contract Wij < 0 is valid and represents a reversed version of

a positive contract; for example, in a derivative contract, Wij < 0 swaps the roles of the

long and short position holders. During contract negotiations, agent i can pay Pji per unit

contract to agent j to get j to agree to the contract size. Since payments are zero-sum,

P T = −P . The contracts size and payments (W,P ) together give the network. At (W,P ),

agent i has contracts wi := Wei. Agent i wants to optimize the utility of their contracts

and believes that contracts have mean return µi ∈ Rn and covariance Σ � 0. Moreover, they

have a risk-aversion parameter γi > 0. Their utility is then:

agent i’s utility gi(W,P ) := wT
i (µi − Pei)− γi ·wT

i Σwi. (5.1)

Note that beliefs do not have to be accurate or follow a particular distribution.

Definition 5.2.1 (Stable point). A feasible (W,P ) is stable if each agent achieves its

maximum possible utility given prices P :

gi(W,P ) = max
(W ′,P ):W ′=W ′T ,PT=−P

gi(W
′, P ) ∀i ∈ [n].

Stable points for truthful network formation are as follows.

Theorem 5.2.2 (Stable network without strategy Jalan et al. (2024a)). Let M be such that

Mei = µi. Let Γ be a diagonal matrix with Γii = γi. Note that Γ � 0 and Σ � 0. There

exists a unique stable point (W,P ):

vec(W ) =
1

2
(Γ⊗ Σ + Σ⊗ Γ)−1vec(M +MT ),

vec(P ) = (Γ−1 ⊗ Σ−1 + Σ−1 ⊗ Γ−1)−1 · vec(Σ−1MΓ−1 − Γ−1MTΣ−1).
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Furthermore, agents can efficiently find the stable point through honest pairwise negotiations.

To illustrate the network model, we consider the example of trade networks. We

analyze real-world trade networks in Section 5.6.

Example 5.2.3 (Trade Networks Without Strategy). A set of n nations forms bilateral

trades with contracts W , payments P , and (µi)i∈[n],Σ are beliefs regarding the mean and

covariances of the contract returns as in Theorem 5.2.2.

• For i < j, the pair {i, j} trade a fixed good depending on {i, j} (e.g. food, energy,

manufacturing equipment).

• If Wij > 0 then i is the seller, otherwise j is the seller.

• Each contract {i, j} has a base price. For example, nation 1 sells wheat to nation 2 at

a base price of $10 per bushel, and they agree to W12 = 200 bushels.

• The quantity Pij is a negotiated adjustment to the base price (e.g. nation 1 gives nation

2 a discount of P21 = 3 and charges them $7 per bushel of wheat).

• The quantities µi;j,µj;i represent the perceptions that agents i, j have about the expected

return per unit of contract (e.g. based on the base price, the demand for wheat in each

country, etc.).

• Finally, Σ11 is the perceived risk of trading with nation 1 (due to e.g. wheat price

volatility, political instability in agent 1’s country, etc). If agent 3 sells a complementary

good for wheat (e.g. sugar), then agent 2 might perceive Σ13 > 0, because the value of

wheat would positively correlate with that of sugar. Nations who trade with they trade

with both 1 and 3 account for this correlation in Eq. (5.1).

5.3 Strategic Negotiations

We now formalize the contract negotiation process. Figure 5.1 illustrates a toy example.

Definition 5.3.1 (Our Model of Strategic Contract Negotiation (M,Γ,Σ, S)). There is a

set S ⊆ [n] of strategic agents who know the (M,Γ,Σ) defined in Theorem 5.2.2. An honest

agent i /∈ S only knows (µi, γi,Σ). The contract negotiation is a two-stage process:
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μ₁=(2,5) μ₁ʹ=(2,5) μ₂ʹ=(1.5,2) μ₂=(3, 2)

(a) Only agent 2 (right stick
figure) is strategic, so µ′1 = µ1

and µ′2 6= µ2.

μ₁=(2,5) μ₁ʹ=(2,3.8) μ₂ʹ=(1.8,2) μ₂=(3, 2)

(b) Both agents are strategic,
so µ′1 6= µ1 and µ′2 6= µ2.
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Figure 5.1: Toy illustration of our model (Definition 5.3.1) for a network with n = 2 agents
and 1 edge, with Γ = I and Σ12 = Σ21 = 1

2
,Σ11 = Σ22 = 1. We may have only one strategic

agent (left), or multiple (middle). Which subset of agents is strategic affects utility for
everyone (right). The case of All Honest corresponds to prior work on truthful network
formation (Jalan et al., 2024a).

1. Strategy Phase: Each strategic agent k ∈ S independently and privately chooses a

negotiating position µ′k ∈ Rn. For honest agents k 6∈ S, µ′k = µk. Let M ′ be a matrix

whose ith column is µ′i.

2. Contract Formation Phase: The network is formed as if every agent’s negotiating

position was their true belief. Specifically, (W,P ) is formed according to Theorem 5.2.2

with (M ′,Σ,Γ).

The network (W,P ), and the true beliefs (M,Γ,Σ) determine each agent’s utility (Eq. (5.1)).

The above definition assumes that strategic agents know the true beliefs (M,Γ,Σ)

(Definition 5.3.1). Our approach generalizes to the case where agents have a distribution over

M , and each agent aims to maximize its expected utility. For ease of exposition, we focus on

the fixed M setting here, with the general setting deferred to the Appendix. Also, we do not

consider strategic choices for the risk aversion γi and covariance matrix Σ. The former is

typically similar for all agents Paravisini et al. (2017), while the latter is often known from

public sources such as credit rating agencies White (2010).

We first prove a general result that characterizes an agent’s utility given arbitrary

negotiating positions for all other agents. It also shows that no agent can gain unbounded

utility by being strategic.

Theorem 5.3.2 (Concave utility given others’ choices). Given M,Γ,Σ and any set of

negotiating positions {µ′i; i 6= k} for all agents except k, agent k’s utility is a quadratic

176



Algorithm 4 Nash Equilibria Computation
Input: (M,Γ,Σ) as in Definition 5.3.1, strategic agent set S ⊆ [n].
Output: Nash equilibria set E.
T,K,L, {yk} ← as in Definition 5.3.6.
TS ← submatrix of T with blocks {T (i,j) : i, j ∈ S}
yS ← concatenation of {yk : k ∈ S}
F ← {X ∈ Rn×|S| : TSvec(X) = yS}
E←

{
∆ ∈ Rn×n :

{
∆|S = X,

∆|[n]\S = 0

}
, X ∈ F

}

return E if |E| > 0 else “No Nash Equilibrium”

function of µ′k with a negative definite Hessian.

Theorem 5.3.2 immediately implies the following.

Corollary 5.3.3 (Strategy yields bounded utility). No choice of negotiating position lets

agent k achieve unbounded utility, even if agent k has full information about other agents’

beliefs and choices.

Next, we turn to the case of multiple strategic agents. In strategic contract negotiations,

all agents make strategic choices independently and cannot adapt their strategy to the others’

choices ex post. They can choose a strategy ex ante based on a Nash equilibrium, defined

below.

Definition 5.3.4. A Nash Equilibrium for a Strategic Contract Negotiation (M,Γ,Σ, S) is a

matrix ∆ ∈ Rn×n with the following property. For each k ∈ S, if all other strategic agents

j ∈ S choose negotiating position (M+∆)ej, then agent k gains the highest utility by choosing

negotiating position (M + ∆)ek in the Strategy Phase.

Notice that ∆ = M ′ −M , so for a fixed M the negotiating positions are determined

by the columns of ∆.

We allow the matrix ∆ to be random, corresponding to mixed strategies. However,

we will see that even if others play mixed strategies, the optimal choice for an agent is to

play a pure strategy (Theorem 5.3.7).

To give an explicit solution for optimal negotiating positions, we require the following

definitions.
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Definition 5.3.5 (Commutator Matrix). We define the commutator matrix Π : Rn2 → Rn2

and the projection matrices Πk : Rn2 → Rn such that Πvec(X) = vec(XT ) and Πkvec(X) =

Xek for all X ∈ Rn×n. For any Z ∈ Rn2 → Rn2, we define Z(p,q) as the n × n block at

position (p, q).

We also require the following definitions.

Definition 5.3.6. For (M,Γ,Σ) as in Definition 5.3.1, we define the following:

K = (Γ⊗ Σ + Σ⊗ Γ),

L =
1

2
(K−1 +K−1Π),

T (k,j) =

{
L(k,k) + (L(k,k))T − 2γk(L

(k,k))TΣL(k,k) k = j

(I − 2γk(L
(k,k))TΣ)L(k,j) k 6= j

yk =
1

2
(2γk(L

(k,k))TΣ− I)ΠkK
−1vec(M +MT ).

Note that K−1 exists because Σ,Γ � 0.

We can now fully characterize the optimal negotiating position of an agent.

Theorem 5.3.7. Suppose a strategic agent k knows S ⊆ [n] and M ∈ Rn×n. The negotiating

position µ′k (or, equivalently, the δk) that optimizes k’s utility is given by the solution(s) to

the following linear system, if any exist.

T (k,k)δk +
∑

j∈S:j 6=k

T (k,j)δj = yk (5.2)

Thus, the optimal negotiating position of an agent k ∈ S is a fixed δ∗k ∈ Rn that

solves a deterministic linear system. In a Nash equilibrium, every strategic agent solves their

corresponding equation. Algorithm 4 explicitly describes how a strategic agent can solve for

the equilibrium ∆.

Corollary 5.3.8 (Nash Equilibria). The Nash equilibria correspond to solving the system of

n|S| linear equations in the fixed vectors {δi | i ∈ S} given by taking Eq. 5.6 for each k ∈ S.

Corollary 5.3.9 (All Equilibria are Pure). All Nash equilibria are pure-strategy Nash equi-

libria.
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Finally, we comment briefly on mechanism design.

Remark 5.3.10 (VCG Mechanism). It is natural to ask whether a mechanism designer

can mitigate the effects of strategic behavior. While incentive-compatible mechanisms such

as the Vickrey-Clarke-Groves (VCG) mechanism are known for bilateral trade, which is a

special case of our model, the VCG mechanism requires a subsidy if the buyer values the

good more than the seller (Nisan et al., 2007). In real-world settings such as international

trade networks (Section 5.6), it is not clear who would provide this subsidy. If we consider

a mechanism with neither subsidies nor taxes, the Gibbard-Satterthwaite theorem (Gibbard,

1973; Satterthwaite, 1975) forbids the existence of non-trivial decision rules in dominant

strategies for many settings (Jackson, 2000). In general, there is tension between the twin

goals of (i) a dominant strategy incentive-compatible mechanism, and (ii) subsidies and taxes

summing to zero (Jackson, 2000).

In summary, we see that strategic agents can negotiate optimally and find Nash

equilibria. This motivates two questions that we will address in turn. First, what are the

effects of strategic negotiations on both overall utility, and individual utilities (Section 5.4)?

Second, strategic agents need to know the matrix M and the set of other strategic agents S.

Can agents learn these from observing the network (Section 5.5)?

5.4 Winners and Losers with Multiple Strategic Agents

The motivation for negotiating strategically, rather than honestly, is that an agent

might achieve better terms for their contracts and hence more utility. However, if multiple

strategic agents are present, their conflicting goals may result in an overall worse equilibrium.

In this section, we study how strategic negotiations affect agents’ utilities. We want to

understand how both the overall welfare (the sum of all utilities) changes, as well as how

individual welfare changes.

To study the overall welfare, we introduce the Price of Strategy1, which is analogous

to the Price of Anarchy.

1Not to be confused with the Price of Stability.
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Definition 5.4.1 (Price of Strategy). For fixed (M,Γ,Σ, S), let (W ′, P ′) be the equilibrium

of strategic negotiations and (W,P ) be the equilibrium under honest negotiations. Then the

Price of Strategy is:

PoS :=

∑n
i=1 gi(W,P )∑n
i=1 gi(W

′, P ′)

Notice that the numerator of the Price of Strategy measures welfare at the equilibrium

without strategy (∆ = 0). This is unlike the Price of Anarchy, which measures the socially

optimal equilibrium (for a possibly nonzero ∆∗). In our setting, agents do not cooperate

and do not care about other agents’ welfare, so it is more appropriate to study the Price of

Strategy. Note that PoS ≤ PoA.

We now present an upper bound, which shows that the Price of Strategy is O(1) when

the norm of the strategically chosen deviation ∆ can be bounded. When ‖∆‖F � ‖M‖F , the
bound no longer holds, and the Price of Strategy may be unbounded. The proof is deferred

to the Appendix.

Proposition 5.4.2 (Price of Strategy with All Agents Strategic). Let (M, I,Σ, [n]) be as in

Definition 5.3.1. Suppose Σ has least eigenvalue λn > 0. Let L, T be as in Definition 5.3.6,

and C ∈ Rn2×n2 be the matrix (implicit in Definition 5.3.6) such that vec(∆) = CLvec(M).

If ‖C‖2 < cλn for a constant c > 0, then:

PoS ≤ O(1).

Proposition 5.4.2 gives a global guarantee on how welfare changes due to strategic

negotiations. We can also ask more fine-grained questions. In particular, we ask:

1. Who “pays the price” for strategy? In particular, if some actors are honest, are only

the honest actors worse off, or can strategic actors be worse off as well?

2. How does the PoS change when only a subset of actors S are strategic?
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Who pays the price of strategy? If |S| = 1, it is clear from Theorem 5.3.2 that the

lone strategic agent does not pay the price for strategy. They can do no worse by negotiating

strategically. However, when |S| > 1, there are three possibilities.

1. All strategic agents in S are better off than if they had all negotiated honestly.

2. Some members of S are worse off.

3. All members of S are worse off.

We will show that all three possibilities can occur, even in a simple network with n = 3

agents. Outcome (3) is especially interesting, as every strategic agent would be better off if

all of them were honest. However, our model does not allow agents to coordinate. Hence,

they are stuck in a lose-lose Nash equilibrium, akin to the Prisoner’s Dilemma.

How does the PoS change as S grows? One might expect that as more agents become

strategic, the PoS may grow because there are more strategic manipulations occurring.

However, we show that in the same example network, the PoS is not mononotonic in |S|. As
more agents become strategic, they counterbalance against the negotiations of other strategic

agents, “taking back” some of the utility that they lost when they were honest.

We now introduce the following example network. More details and other examples

are presented in the Appendix.

Example 5.4.3 (Two Hedge Funds, One Investor (Figure 5.2)). For m, a ∈ R and ρ ∈ (−1, 1),

define:

M =




0 a a
m 0 0
m 0 0


 , Σ =




1 0 0
0 1 ρ
0 ρ 1


 , Γ = I. (5.3)

The first column corresponds to the investor, and the others to the hedge funds. Under this

setting, the hedge funds do not want to trade with each other, and none of the agents want to

self-invest. Also, the hedge funds are correlated with each other (via ρ), and uncorrelated with

the investor.

We will consider two cases: (a) the investor is honest and the hedge funds are strategic

(S = {2, 3}), and (b) all agents are strategic (S = {1, 2, 3}).
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(a) Network diagram with entries of entries of M marked on edges.
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(b) Utilities of the Investor and a single Fund under Proposition 5.9.3. Note that the two Funds
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Figure 5.2: Network with three agents: (a) An investor trades with two hedge funds, with the
investor gaining 5 per unit contract while the hedge funds gain 1. (b) We show the utility for
the investor (left) and either hedge fund (right) for various strategic behaviors. The investor
has low utility when she is honest, but is better off than the hedge funds when she is strategic.
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From Proposition 5.9.3 we can compute the utilities at equilibrium for any particular

choice of M and Σ. Figure 5.2b shows the utilities for a specific M and varying ρ. Note that

κ = 1+|ρ|
1−|ρ| , so our bound on the Price of Strategy diverges as ρ→ −1 or ρ→ 1.

We observe the following.

When only the hedge funds are strategic, they can be both better off or both

worse off (Outcomes 1 and 3). The specifics depend on the perceived correlation ρ.

As ρ ≈ −1, the hedge funds are worse off being strategic than if they were both honest

(Figure 5.2b). This is due to the hedging behavior of the investor.

As ρ→ −1, the investor wishes to invest almost equally in both funds to reduce her

overall risk. But the hedge funds only form one contract each. Since they cannot hedge their

risk, they prefer much smaller contracts than the investor. If both funds are honest, they

can negotiate contract sizes to match their risk preference. However, if both are strategic,

each fund worries about its competitor. So, both funds end up taking on more risk than they

would prefer, and are worse off.

On the other hand, for ρ� −1, the investor will not seek such large contracts, since

she cannot hedge as well. So the hedge funds are both better off being strategic.

When all agents are strategic (S = [n]), the investor can be better off while the

funds are both worse off (Outcome 2). When S = [n], there is no setting in which all

agents are better off. However, the investor is better off as ρ→ −1. As before, the funds are

worse off because they are forced to take large contracts. When the investor is also strategic,

she can force the funds to compete for her investment and obtain better terms from both.

She will obtain large contracts with both, which enable low risk due to hedging and have

better terms than if she was honest.

5.5 Learning from Strategic Negotiation Outcomes

Algorithm 4 describes how a strategic agent should choose its Nash-optimal negotiating

position. However, to run the algorithm, the agent must know

1. the matrix H := (M +MT ) of the beliefs of all agents, and
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2. the set S ⊆ [n] of strategic agents.

Suppose an agent (called the learner) lacks this information but can observe the entire

network W ′. The learner wishes to learn M and S for use in future negotiations. From

W ′, the learner can recover the negotiating positions M ′ +M ′T via Theorem 5.2.2. But she

cannot infer the true beliefs M +MT .

We therefore consider a model in which the learner also knows extra information in

the form of a feature matrix X.

Definition 5.5.1 (Network Setting with Agent Features). Let X ∈ Rn×d have rows xi ∈ Rd

for agent i ∈ [n], and B ∈ Rd×d. A network setting with agent features (B,Γ,Σ, X) is such

that, for i, j ∈ [n]

Mij = xTi Bxj

for all i, j ∈ [n]. Hence, vec(M) = (X ⊗X)vec(B).

For simplicity, we focus on the case of d� n and Γ = I. The latter corresponds (up

to a constant) to homogeneous risk aversions, which are commonly observed Ang (2014);

Paravisini et al. (2017).

Given W ′ and X, the learner wishes to learn B. Now, W ′ depends on the negotiating

positions M ′, which can differ from M in an unknown way. For instance, some strategic

agents may occasionally deviate from the Nash strategy to throw off the learner.

We therefore formulate our learning problem as a robust regression.

Definition 5.5.2 (Robust Regression). Given features X and a stable network W ′ arising

from negotiating positions M ′, the robust regression problem with covariates (X⊗X), response

y ∈ Rn2, and corruption threshold β ∈ [0, 1] is to solve:

min
B̂∈Rd×d

‖(X ⊗X)vec(B̂ + B̂T )− y‖2
2,

assuming that y differs from vec(M + MT ) arbitrarily at up to βn2 entries. We write

RR(X ⊗X,y, β) for shorthand.

Note that we do not require that M ′ corresponds to a Nash equilibrium. We assume

an adaptive adversary as opposed to the simpler oblivious adversary setting. Hence, the
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Algorithm 5 Estimation of mean beliefs B and strategic agents S
Input: Network W ′ ∈ Rn×n, agent features X ∈ Rn×d, corruption threshold β ∈ (0, 1)
Output: Estimates B̂ ∈ Rd×d and Ŝ ⊆ [n].
vec(H ′)← Kvec(W ′)
vec(B̂)← solve RR(X ⊗X, vec(H ′), β)
Rij ← |eTi (H ′ − 1

2
X(B̂ + B̂T )XT )ej|

Aij =

{
1 if Rij belongs to top βn2 entries of R
0 otherwise

S1, S2 ← spectral clustering on A with 2 clusters
Ŝ ← Si such that |Si| is nearest to

√
8βn+1

4

return B̂, Ŝ.

learner must learn in the face of complex counter-strategies by other agents who have full

knowledge of the network setting and features.

We use Torrent Bhatia et al. (2015) to solve the robust regression problem. This

algorithm has provable guarantees even when an Ω(1) fraction of the response vector y is

adversarially corrupted. However, we emphasize that the choice of robust regression algorithm

is independent of our method, and alternative algorithms can also be used.

Our Algorithm 5 first learns a B̂ using Torrent. Then, it computes a matrix of

residuals R and constructs an unweighted graph G = ([n], E) such that (i, j) ∈ E iff Rij is

one of the βn2 largest residuals. If B̂ ≈ B, then these edges should all be incident to the

strategic nodes S ⊂ [n]. Therefore, a consistent clustering algorithm such as Rohe et al.

(2011) can recover S.

Next, we discuss the recovery guarantee for B̂. We defer the theoretical guarantee for

Ŝ to Section 5.8.6. We recount the following technical condition of Bhatia et al. (2015). For

a matrix X ∈ Rn×d with n samples in Rd and S ⊂ [n] let XS ∈ R|S|×d select rows in S.

Definition 5.5.3 (SSC and SSS Conditions). Let γ ∈ (0, 1). A design matrix X ∈ Rn×d

satisfies the Subset Strong Convexity Property at level 1− γ and Subset Strong Smoothness

Property at level γ with constants λ1−γ,Λγ respectively if:

λ1−γ ≤ min
S⊂[n]:|S|=(1−γ)n

λmin(XT
SXS)

Λγ ≥ max
S⊂[n]:|S|=γn

λmax(X
T
SXS)
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We will give a concrete example of the SSC and SSS constants for a feature matrix X

in Example 5.5.4.

Example 5.5.4 (Balanced Stochastic Block Model). Suppose that X ∈ {0, 1}n×2 describes

community memberships for a Stochastic Block Model with equally sized communities. Then

(X ⊗X)T (X ⊗X) = n2

4
I4. It can be shown that for any γ ∈ (0, 1) that the corresponding

constants are λ1−γ = n2(1
4
− γ) and Λγ = γn2. Therefore the condition of Proposition 6.4.2

holds for γ < 1
68
. A sufficient condition is |S| ≤ n

136
.

Proposition 5.5.5. Suppose S ⊂ [n] is the strategic set, and M ′ ∈ Rn×n is the matrix of

negotiating positions that results in a stable network W ′. Let β ≥ 2n|S|−|S|2
n2 . Suppose X ⊗X

satisfies the SSC condition at level 1−β with constant λ1−β, and SSS condition at level β with

constant Λβ (Definition 5.5.3). Then, there exists a constant C > 0 such that if |S| ≤ Cn

and 4
√

Λα√
λ1−α

< 1, Algorithm 5 with threshold parameter β and T iterations of Torrent

returns B̂ such that:

‖B̂ + B̂T − (B +BT )‖F ≤ exp(−cT ) ·
(‖M ′ + (M ′)T − (M +MT )‖F

n

)

for an absolute constant c > 0, and n large enough.

Remark 5.5.6 (Random design). The SSC and SSS conditions are known to hold for a

sub-Gaussian design Bhatia et al. (2015). Our Proposition 5.5.5 concerns arbitrary fixed

design, but can be easily extended to the random design setting with similar techniques.

5.6 Experiments

We show experiments for learning the network parameters on a simulated dataset,

and then test the effects of strategic negotiations on the OECD international trade network.

5.6.1 Learning Experiments

We validate our learning approach on networks where agent i has d-dimensional

features xi sampled independently from Dirichlet(1/d, 1/d, . . . , 1/d), and M has a bilinear

form with a random symmetric matrix B ∈ Rd×d with upper triangular entries N(5, 1)

(Definition 5.5.1). Then, we sample S ⊆ [n] uniformly from all subsets of a certain size, and
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compute the stable network W ′ with Algorithm 4. All experiments use n = 100 agents and

β := 2|S|n−|S|2
n2 . See the Appendix for full experimental details.

Figures 5.3 and 5.4 show the accuracy of the recovered matrix B̂ and the strategic

subset of agents Ŝ, respectively. We find that Algorithm 5 performs well for a broad range of

parameter settings. Unsurprisingly, it is best for small d and |S|. We find that the regression

error is low even with a large number of strategic actors (Figure 5.3). This suggests that the

condition of |S| ≤ Cn in Proposition 5.5.5, which is required to handle the worst-case S, may

be relaxed if we are willing to accept an average-case guarantee.
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Figure 5.3: Normalized regression error for B̂ estimation, with shaded regions denoting
[10, 90]-percentile outcomes across 10 independent trials. Left: |S| = 0.1× n. Right: d = 2.
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Figure 5.4: Balanced accuracy (the mean of the true positive rate and true negative rate) of
Ŝ estimation, in the same settings as Figure 5.3. Shaded regions denote [10, 90]-percentile
outcomes across 10 independent trials.

5.6.2 Negotiations on International Trade Networks

In this section, we analyze strategic negotiations on a dataset of international trade

among n = 46 large economies OECD (2022) across T = 49 time periods.
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Nodes represent nations, and edge W t
ij at time t is the total recorded trade between

i and j during a fiscal quarter. Following Jalan et al. (2024a), we infer the (M t,Σt,Γt)

(Definition 5.3.1) from the networks W t over the period 2010-2020 (see Appendix for full

details).

Trade networks arise from complex strategic considerations Carlson and Dacey (2013).

We perform a counterfactual analysis by comparing actual trade volumes from 2010-2020 (the

Observed Network) to counterfactual networks that would have arisen from strategic behavior.

Counterfactual analysis is a common experimental tool in economics (Chudik et al., 2021;

Arca et al., 2023; Bogetoft et al., 2024), and has been used in the network games literature

to study manipulation of opinion dynamics (Chen and Rácz, 2021b).

In our counterfactual analysis, we model what would have happened if, in addition

to their usual strategies, certain countries used Algorithm 4 in their trade negotiations.

Figure 5.5 shows whether agents gain or lose utility under strategic negotiations, for different

choices of S. Each row corresponds to a a time period, and each column to a country. Cell

(t, i) is positive (red) if agent i is better off at time t under the given choice of S than they

would have been if all agents had negotiated honestly. We note the following.

(1) Strategic behavior does not always help. When all countries are strategic (left),

agents can be better or worse off depending on the time step. Interestingly, the smallest

countries by trade volume are usually better off under both scenarios. This is because they

deal in such small volumes (a factor of 103 difference from the largest countries) that offering

them good deals does not hurt much. Moreover, the structure of the covariance matrix Σ

matters. Small countries may trade in unique goods, offer sources of uncorrelated returns

and therefore incentivizing larger countries to deal with them.

(2) Sensitivity to choice of S. The outcomes for certain countries are notably different

under the scenario where S = {US,UK} as opposed to S = [n]. In particular, the column

corresponding to the UK (6th largest degree) shows that they are usually worse off when

all are strategic (left), but are better off when only the US and UK are strategic (right).

Conversely, the US is typically better off when all are strategic (left) and worse off when only

the US and UK are strategic. So, despite being much larger than the UK, the US cannot
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sway outcomes as much in the case of S = {US,UK}. Moreover, as in Example 5.4.3, there

are time periods where all members of S are worse off (right).

(3) Honest actors can gain due to the strategic choices of others. When only the US

and UK are strategic, various honest actors are better off under the strategic equilibrium than

the honest equilibrium (right). Despite not intending to, the US and UK may inadvertently

offer better terms to some countries (such as the smallest economies) as a result of their

competition with each other.

Country Index (Sorted by Degree)

Da
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All Strategic

Country Index (Sorted by Degree)

US & UK Strategic

101
100
10 1
10 2
10 3
10 4

0
10 4
10 3
10 2
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Figure 5.5: The effect of strategic negotiations on each country’s utility at each timestep, for
S = [n] (left), and S = {United States,United Kingdom} (right). In each heatmap, if the
cell (t, i) is positive (red), then agent i gains at time t, while if it negative (blue), then agent i
loses at time t. Specifically, for a fixed S, let gti(S) be the utility of country i and time t when
S is the set of strategic agents. Note that gti(∅) is the utility when all countries negotiate
honestly. Then each cell (t, i) displays gti(S)−gti(∅)

gti(∅)
with respect to the particular choice of S.

Next, Figure 5.6 displays the Price of Strategy for three scenarios: the worst-case

choice of S when |S| = 1 (left), the worst choice of S among five random choices with |S| = 5

(the middle), and when S = [n] (right). Surprisingly, the Price of Strategy is much higher for

|S| = 5 than when S = [n] or |S| = 1, showing that the Price of Strategy is not monotonic in

|S|. We note that the Price of Strategy is O(1) for all time periods with S = [n].

5.7 Conclusions and Future Work

In this paper, we propose a model of network formation with multiple strategic actors.

Strategic agents manipulate the network formation process by using negotiating positions

different from their true preferences. We give an efficient algorithm to find the set of all Nash

189



Date
1.028

1.029

1.030

1.031

1.032
Pr

ice
 o

f S
tra

te
gy

Single Strategic Agent

Date0

5

10

15

20

Five Strategic Agents

Date

1.204

1.206

1.208

1.210

All Strategic Agents

Figure 5.6: Price of strategy for the first 20 time periods, with multiple choices of |S|. For
|S| = 1 and |S| = n we can compute the PoS exactly. For |S| = 5 we generate 5 choices of S
uniformly at random and report the maximum. For the worst S among all

(
n
5

)
choices, the

PoS could be even higher.

equilibria, and show that they are all pure-strategy equilibria. The resulting equilibrium can

result in a loss of utility compared to honest negotiations, even for agents who are strategic.

This is in contrast to the single strategic agent setting where the strategic agent can do no

worse than if she was honest. When all actors are strategic, we show that the Price of Strategy

can be bounded. However, this is not conclusive, because we also show that the Price of

Strategy can be higher when some agents are honest. Next, we show that agents can learn

the true preferences of others from historical network data, even if the others had negotiated

strategically or sought to fool the learner. Finally, experimental results on real-world and

simulated networks validate our approach.

Future work could include different noise models for learning, such as partially adap-

tive Mukhoty et al. (2023) or oblivious noise d’Orsi et al. (2021). Further, one could extend

our strategic negotiations model to a repeated games setting. To our knowledge, optimal

negotiating positions in repeated games against learning agents have only been studied in

non-network settings Deng et al. (2019); Assos et al. (2024). Finally, in light of the results

of Section 5.4, it would be interesting to fully determine when strategic actors are better or

worse off than if they had all negotiated honestly.

5.8 Proofs and Additional Theoretical Results

In this section we give proofs for the results of the paper, and also include additional

theoretical results (Section 5.8.4 and Section 5.8.6) discussed in the paper.
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5.8.1 Proof of Theorem 5.3.2

The proof of Theorem 5.3.2 is through Lyapunov analysis. We break up the proof into

a series of Propositions. First, we characterize how strategic negotiation affects the contracts

of a strategic actor k ∈ [n].

Throughout this section, let i ∈ [n] let δi := µ′i − µi. Choosing the optimal µ′i is

equivalent to δi, so we give results in terms of δi.

Proposition 5.8.1. Let k ∈ [n]. Let δ−k := {δi : i 6= k} and let (W,P ) be the stable point if

k reports honestly and all others report according to δ−k. Next, consider some δk 6= 0 and

let (W ′, P ′) be the stable point if k reports δk and all others report according to δ−k. Then

W ′ek = Wek + Bδk for a matrix B defined as follows. Let Γ−1/2ΣΓ−1/2 = V ΛV T be the

eigendecomposition of Γ−1/2ΣΓ−1/2 � 0. Let A ∈ Rn×n be a symmetric matrix such that:

Aij =





V 2
ki

4λi
+

n∑
`=1

V 2
k`

2(λi+λ`)
i = j

VkiVkj
2(λi+λj)

i 6= j

Then B = γ−1
k Γ−1/2V AV TΓ−1/2.

Proof. Let ∆W = W ′−W . By Theorem 5.2.2, 2(Σ∆WΓ + Γ∆WΣ) = ekδ
T
k +δke

T
k . Therefore

vec(∆W ) = 1
2
(Σ⊗ Γ + Γ⊗ Σ)−1(ekδ

T
k + δke

T
k ).

Next, let vi := V ei. Using the eigendecomposition properties of Kronecker sums Horn

and Johnson (2008) as in Corollary 1 of Jalan et al. (2024a),

Γ1/2∆WΓ1/2 =

( n∑

i=1

n∑

j=1

vTi Γ−1/2
(
ekδ

T
k

)
Γ−1/2vj

2(λi + λj)
viv

T
j

)
+

( n∑

i=1

n∑

j=1

vTi Γ−1/2
(
δke

T
k

)
Γ−1/2vj

2(λi + λj)
viv

T
j

)

Let G := Γ−1/2V and gi := Gei. Then vTi Γ−1/2ek = Gki and eTk Γ−1/2vj = Gkj. Hence:

∆Wek = Γ−1/2

( n∑

i=1

n∑

j=1

Gkig
T
j δk +Gkjg

T
i δk

2(λi + λj)
viv

T
j

)
Γ−1/2ek

= Γ−1/2

( n∑

i=1

n∑

j=1

Gkig
T
j δk +Gkjg

T
i δk

2(λi + λj)
Gkjvi

)

= Γ−1/2

( n∑

i=1

n∑

j=1

GkiGkj

2(λi + λj)
viv

T
j +

n∑

j=1

G2
kj ·
( n∑

i=1

(
1

2(λi + λj)
viv

T
i

)))
Γ−1/2δk
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Hence W ′ek −Wek = Bδk for a matrix B defined as above. We can further simplify B as

B = Γ−1/2

( n∑

i=1

(
G2
ki

4λi
+

n∑

j=1

G2
kj

2(λi + λj)

)
viv

T
i +

n∑

i=1

∑

j 6=i

GkiGkj

2(λi + λj)
viv

T
j

)
Γ−1/2

Notice that Gki = γ
−1/2
k Vki, and that B depends only on the kth row of G so we can factor

out γ−1
k and replace the entries Gki with Vki.

Finally, let A ∈ Rn×n be defined as in the statement of this Proposition. Then:

B = γ−1
k Γ−1/2

( n∑

i=1

Aiiviv
T
i +

n∑

i=1

∑

j 6=i

Aijviv
T
j

)
Γ−1/2

= γ−1
k Γ−1/2V AV TΓ−1/2.

The conclusion follows.

The next Proposition gives the core idea, which is to prove that Λ1/2AΛ1/2 is a

contraction via a Lyapunov argument.

Proposition 5.8.2. Let F = Λ1/2AΛ1/2. The eigenvalues of F are all real and contained in

(0, 1).

Proof. Notice that F is symmetric, since Λ is diagonal and A is symmetric. By the Spectral

Theorem, F has an eigendecompsition with real eigenvalues.

Next, notice A = C + D for Cij = Cji =
VkiVkj

2(λi+λj)
and D a diagonal matrix with

Dii =
n∑
`=1

V 2
k`

2(λi+λ`)
. Then F = C̃ + D̃ for C̃ = Λ1/2CΛ1/2 and D̃ = Λ1/2DΛ1/2.

Let x = 1√
2
Λ1/2V Tek. Then C̃ satisfies the Lyapunov equation:

ΛC̃ + C̃Λ = xxT

Since C̃ is self-adjoint it has an eigenbasis with real eigenvalues. Let y be an eigenvector of

C̃ with eigenvalue µ. Then (yTx)2 = yT (C̃Λ + ΛC̃)y = 2µyTΛy. By the Cauchy-Schwarz
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inequality,

µ =
(yTx)2

2yTΛy

=
1

4

(
n∑
i=1

√
λiyiVki)

2

n∑
i=1

λiy2
i

≤ 1

4

(
n∑
i=1

λiy
2
i )

n∑
i=1

V 2
ki)

n∑
i=1

λiy2
i

≤ 1

4

Further, since Λ � 0, µ ≥ 0. So the eigenvalues of C̃ are all within [0, 1
4
]. Next, the eigenvalues

of D̃ are simply its diagonal entries. Recall that

D̃ii =
∑

j

λiV
2
kj

2(λi + λj)

>
λi

2(λi + maxj λj)

∑

j

V 2
kj

> 0,

since V is orthonormal and λj > 0. By similar reasoning, D̃ii <
1
2
. We conclude that the

eigenvalues of F are contained in (0, 3
4
).

We are ready to prove Theorem 5.3.2.

Proof of Theorem 5.3.2. Fix the index k of the strategic actor. Suppose k reports δk and

each i 6= k reports some δi. Let (W ′, P ′) be the resulting stable point.

By Lemma 5.8.3, the utility of k at (W ′, P ′) is −〈δk,w′k〉+ γk〈w′k,Σw′k〉 where w′k is

the kth column of W ′.

By Proposition 5.8.1, w′k = wk + Bδk for B = γ−1
k Γ−1/2V AV TΓ−1/2 with V and A

as in Proposition 5.8.1. Hence the utility of k is quadratic in δk, and the quadratic term is

−δTk
(
B − γkBΣB

)
δk. A straightforward calculation gives:

B − γkBΣB = γ−1
k Γ−1/2V Λ−1/2

(
Λ1/2AΛ1/2 −

(
Λ1/2AΛ1/2

)2
)

Λ−1/2V TΓ−1/2
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Let F := Λ1/2AΛ1/2. To show that the Hessian of the utility of k is negative definite in δk,

we need to show F − F 2 � 0. Since the spectrum of F is contained in (0, 1) by Proposition

5.8.2, F � F 2 and the conclusion follows.

5.8.2 Proof of Theorem 5.3.7

To prove Theorem 5.3.7, we first state an easy Lemma.

Lemma 5.8.3 (Utility from Strategy). If agent k reports δ′k resulting in (W ′, P ′), then k’s

utility is

gk(W
′, P ′) = −〈δk,w′k〉+ γk〈Σw′k,w′k〉,

where w′k = W ′ek.

We now prove Theorem 5.3.7.

Proof of Theorem 5.3.7. We begin by proving that agent k’s optimal negotiating position δ?k
given δ∗j∈S:j 6=k is the solution to the linear system:

(2γk(L
(k,k))TΣ− I)vk = T (k,k)δ?k +

∑

j∈S:j 6=k

T (k,j)δ?j (5.4)

where T (p,q) and L are defined as in Algorithm 4.

Let ∆M ∈ Rn×n have ith column δ?i if i ∈ S and zero otherwise. Let (W ′, P ′) be the

stable point resulting from a choice of M ′ := M + ∆M as the agents’ negotiating positions in

the Strategy Phase. From Theorem 5.2.2, we have

vec(W ′) = vec(W )

+ 0.5(Σ⊗ Γ + Γ⊗ Σ)−1vec(∆M + ∆T
M)

⇒ vec(W ′ −W ) = Lvec(∆M)

⇒ w′k −wk = L(k,k)δk +
∑

j∈S:j 6=k

L(k,j)δj,

where the second line follows from the commutation property of Π, and the matrix L is

defined as in Algorithm 4.

Now, fix an agent k ∈ S. They want to choose w′k optimally based on the above

equation, but are uncertain about the value of wk.
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Let Ak := L(k,k) and bk :=
∑

j∈S:j 6=k
L(k,j)δj. By Lemma 5.8.3, we have:

gk = −〈δk,w′k〉+ γk〈w′k,Σw′k〉

= −〈δk, (wk + Akδk + bk)〉+ γk〈(wk + Akδk + bk),Σ(wk + Akδk + bk)〉

= −〈δk, Akδk〉 − 〈δk, bk〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉

+ γk〈Akδk + bk,Σ(Akδk + bk)〉+ γk〈wk,Σwk〉

Agent k wants to optimize gk by choosing δk. By Theorem 5.3.2, the optimal

negotiating position δ? is the critical point of gk with respect to δk. Notice that the Hessian

of gk with respect to δk does not depend on δj for any j 6= k, so the critical point gives the

optimal negotiating position for gk. Setting ∇δkgk = 0, we obtain:

(Ak + ATk − 2γkA
T
kΣAk)δ

?
k = (2γkA

T
kΣ− I)wk

Rearranging terms, we obtain the linear system:

(2γkA
T
kΣ− I)wk =

[
(L(k,k) + (L(k,k))T − 2γk(L

(k,k))TΣL(k,k))δ?k

+
∑

j∈S:j 6=k

L(k,j)δ∗j − 2γk(L
(k,k))TΣ

∑

j∈S:j 6=k

L(k,j)δ∗j

]

⇒ y(k) = T (k,k)δ?k +
∑

j∈S:j 6=k

T (k,j)δ∗j (5.5)

Where T (k,k) = (L(k,k) + (L(k,k))T − 2γk(L
(k,k))TΣL(k,k)) and T (k,j) = (I − 2γk(L

(k,k))TΣ)L(k,j)

for j 6= k.

5.8.3 Generalization of Theorem 5.3.7 to Distribution on Negoiating Positions

We require the following Lemmata.

Lemma 5.8.4 (Seber and Lee (2012)). Let x ∈ Rn be a random vector and A ∈ Rn×n a

symmetric matrix. Then, if E[x] = µ and x has covariance Σ, then:

E[xTAx] = tr(AΣ) + µTAµ

Next, we need the standard property of the commutation matrix.
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Lemma 5.8.5 (Horn and Johnson (2008)). There exists a permutation matrix Π : Rn2 → Rn2

such that for X ∈ Rn×n, Πvec(X) = vec(XT ). We call Π the commutation matrix.

We are ready to prove a generalization of Theorem 5.3.7. The following statement

generalizes to the case where agents have distributions over the negotiating positions of other

strategic agents.

Theorem 5.8.6 (Generalization of Theorem 5.3.7.). Suppose a strategic agent k ∈ [n] knows

S, and has a distribution Dk over the negotiation positions {µ′i : i ∈ S \ {k}} with finite first

and second moments. Define δi := µ′i −µi. The negotiating position µ′k (or, equivalently, the

δk) that optimizes k’s expected utility with respect to Dk is given by the solution(s) to the

following linear system, if any exist.

T (k,k)δk +
∑

j∈S:j 6=k

T (k,j) E
Dk

δj = yk (5.6)

Proof of Theorem 5.8.6. We begin by proving that agent k’s optimal negotiating position δ?k
given δ∗j∈S:j 6=k is the solution to the linear system:

(2γk(L
(k,k))TΣ− I)vk = T (k,k)δ?k +

∑

j∈S:j 6=k

T (k,j)δ?j (5.7)

where T (p,q) and L are defined as in Algorithm 4.

Let ∆M ∈ Rn×n have ith column δ?i if i ∈ S and zero otherwise. Let (W ′, P ′) be the

stable point resulting from a choice of M ′ := M + ∆M as the agents’ negotiating positions in

the Strategy Phase. From Theorem 5.2.2, we have

vec(W ′) = vec(W )

+ 0.5(Σ⊗ Γ + Γ⊗ Σ)−1vec(∆M + ∆T
M)

⇒ vec(W ′ −W ) = Lvec(∆M)

⇒ w′k −wk = L(k,k)δk +
∑

j∈S:j 6=k

L(k,j)δj,

where the second line follows from Lemma 5.8.5, and the matrix L is defined as in Algorithm 4.

Notice that there is a distribution on wk induced by Dk.
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Now, fix an agent k ∈ S. They want to choose w′k optimally based on the above

equation, but are uncertain about the value of wk.

Let Ak := L(k,k) and bk :=
∑

j∈S:j 6=k
L(k,j)δj. By Lemma 5.8.3, we have:

gk = −〈δk,w′k〉+ γk〈w′k,Σw′k〉

= −〈δk, (wk + Akδk + bk)〉

+ γk〈(wk + Akδk + bk),Σ(wk + Akδk + bk)〉

= −〈δk, Akδk〉 − 〈δk, bk〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉

+ γk〈Akδk + bk,Σ(Akδk + bk)〉+ γk〈wk,Σwk〉

Agent k wants to optimize Ebk [gk] by choosing δk. Notice bk is a linear function of

the vectors δj. Let µ = E[bk] and Q = E[(bk − µ)(bk − µ)T ].

Therefore agent k ∈ S wants to optimize:

E
bk

[gk] = E
bk

[
− 〈δk, Akδk〉 − 〈δk, bk〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉

+ γk〈Akδk + bk,Σ(Akδk + bk)〉+ γk〈wk,Σwk〉
]

= −〈δk, Akδk〉 − 〈δk,µ〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk〉+ 2γk〈Σwk,µ〉+ γk〈wk,Σwk〉

+ γk〈ΣAkδk, Akδk〉+ 2γk〈µ,ΣAkδk〉+ γktr(ΣQ) + γk〈µ,µ〉

Where the last step is by Lemma 5.8.4.

Next, by Theorem 5.3.2, the optimal negotiating position δ? is the critical point of gk
with respect to δk. Notice that the Hessian of E[gk] with respect to δk does not depend on δj
for any j 6= k, so the critical point gives the optimal negotiating position for E[gk]. Setting

∇δk Ebk [gk] = 0, we obtain:

(Ak + ATk − 2γkA
T
kΣAk)δ

?
k = (2γkA

T
kΣ− I)wk + (2γkA

T
kΣ− I)µ

Notice that the gradients of the quadratic terms tr(ΣRk) and γTk vTk Σvk with respect to δk
are zero.
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Rearranging terms, we obtain the linear system:

(2γk(L
(k,k))TΣ− I)vk =

[
(L(k,k) + (L(k,k))T − 2γk(L

(k,k))TΣL(k,k))δ?k +
∑

j∈S:j 6=k

L(k,j) E[δj] −2γk(L
(k,k))TΣ

∑

j∈S:j 6=k

L(k,j) E[δj]

]

⇒ z(k) = T (k,k)δ?k +
∑

j∈S:j 6=k

T (k,j) E[δj] (5.8)

Where T (k,k) = (L(k,k) + (L(k,k))T − 2γk(L
(k,k))TΣL(k,k)) and T (k,j) = (I − 2γk(L

(k,k))TΣ)L(k,j)

for j 6= k.

5.8.4 Generalization of Theorem 5.3.7 to Stochastic M

In this section we will describe optimal negotiating positions in the setting where

each strategic agent does not know the true matrix M ∈ Rn×n but instead has a probability

distribution for it. The proof is similar to that of Theorem 5.3.7.

Theorem 5.8.7. Suppose agent i ∈ [n] believes M ∈ Rn×n follows M ∼ Di, and seeks to

maximize its expected utility EDi [gi]. We assume that all distributions Di have finite first and

second moments. Let Vi ∈ Rn×n be such that vec(Vi) = 1
2
K−1(EDi [M ]+EDi [M ]T ), where K is

defined in Algorithm 4. Let vi = Viei. Suppose each strategic agent k ∈ S knows {vj | j ∈ S}
(they can compute it from the network setting ({Di},Γ,Σ)) which is known to all strategic

agents). Modify the linear system of Algorithm 4 so that:

∀k ∈ S : y(k) ← (2γk(L
(k,k))TΣ− I)vk

This modified version of Algorithm 4 returns the set of Nash equilibria if they exist, and

otherwise returns “No Nash Equilibrium.”

Proof. We begin by proving that agent k’s optimal negotiating position δ?k given δ∗j∈S:j 6=k is

the solution to the linear system:

(2γk(L
(k,k))TΣ− I)vk = T (k,k)δ?k +

∑

j∈S:j 6=k

T (k,j)δ?j (5.9)

where T (p,q) and L are defined as in Algorithm 4.

Let ∆M ∈ Rn×n have ith column δ?i if i ∈ S and zero otherwise. Let (W ′, P ′) be the

stable point resulting from a choice of M ′ := M + ∆M as the agents’ negotiating positions in
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the Strategy Phase. From Theorem 5.2.2, we have

vec(W ′) = vec(W )

+ 0.5(Σ⊗ Γ + Γ⊗ Σ)−1vec(∆M + ∆T
M)

⇒ vec(W ′ −W ) = Lvec(∆M)

⇒ w′k −wk = L(k,k)δk +
∑

j∈S:j 6=k

L(k,j)δj,

where the second line follows from Lemma 5.8.5, and the matrix L is defined as in Algorithm 4.

Notice that there is a distribution on wk induced by Dk.

Now, fix an agent k ∈ S. They want to choose w′k optimally based on the above

equation, but are uncertain about the value of wk.

Let Ak := L(k,k) and bk :=
∑

j∈S:j 6=k
L(k,j)δ∗j . By Lemma 5.8.3, we have:

gk = −〈δk,w′k〉+ γk〈w′k,Σw′k〉

= −〈δk, (wk + Akδk + bk)〉

+ γk〈(wk + Akδk + bk),Σ(wk + Akδk + bk)〉

= −〈δk, Akδk〉 − 〈δk, bk〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉

+ γk〈Akδk + bk,Σ(Akδk + bk)〉+ γk〈wk,Σwk〉

Therefore agent k ∈ S wants to optimize:

E
M∼Dk

[gk] = E
M∼Dk

[
− 〈δk, Akδk〉 − 〈δk, bk〉 − 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉

+ γk〈Akδk + bk,Σ(Akδk + bk)〉+ γk〈wk,Σwk〉
]

= −〈δk, Akδk〉 − 〈δk, bk〉+ γk〈Akδk + bk,Σ(Akδk + bk)〉

+ E
M∼Dk

[
− 〈δk,wk〉+ 2γk〈Σwk, Akδk + bk〉+ γk〈wk,Σwk〉

]

Next, recall that EM∼Dk [wk] = vk. Let wk have covariance Rk. Then, by Lemma 5.8.4, we

have:

E
M∼D

[gk] = −〈δk, Akδk〉 − 〈δk, bk〉+ γk〈Akδk + bk,Σ(Akδk + bk)〉

+

(
− δTk vk + 2γkv

T
k ΣAkδk + 2γkv

T
k Σbk + γktr(ΣRk) + γkv

T
k Σvk

)
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By Theorem 5.3.2, the optimal negotiating position δ? is the critical point of gk with

respect to δk. Notice that the Hessian of E[gk] with respect to δk does not depend on D, so

the critical point gives the optimal negotiating position for E[gk]. Setting ∇δk EM∼D[gk] = 0,

we obtain:

(Ak + ATk − 2γkA
T
kΣAk)δ

?
k = (2γkA

T
kΣ− I)vk

+ (2γkA
T
kΣ− I)bk

Notice that the gradients of the quadratic terms tr(ΣRk) and γTk vTk Σvk with respect to δk
are zero.

Rearranging terms, we obtain the linear system:

(2γk(L
(k,k))TΣ− I)vk =

[
(L(k,k) + (L(k,k))T − 2γk(L

(k,k))TΣL(k,k))δ?k +
∑

j∈S:j 6=k

L(k,j)δ?j

− 2γk(L
(k,k))TΣ

∑

j∈S:j 6=k

L(k,j)δ?j

]

⇒ z(k) = T (k,k)δ?k +
∑

j∈S:j 6=k

T (k,j)δ?j , (5.10)

where T (p,q) is defined as in Algorithm 4 and and z(k) = (2γk(L
(k,k))TΣ− I)vk. This proves

Eq. 5.9.

Having verified Eq. 5.9, it follows that a Nash equilibrium exists, the modified

Algorithm 4 finds it. Conversely, a tuple (δ?i )i∈S that solves Eq. (5.10) for all k is such

that δ?i is the optimal δi for all i ∈ S given that other agents report (δ?j )j∈S\{i}. If no Nash

equilibrium exists, Eq. (5.10) cannot be simultaneously satisfied for all k, so the modified

Algorithm 4 returns “No Nash Equilibrium.”

5.8.5 Proof of Proposition 5.5.5

For completeness, we first state the techincal result of Bhatia et al. (2015) that we

require.

Theorem 5.8.8 (Bhatia et al. (2015)). Let X ∈ Rn×d be a design matrix and C > 0 an

absolute constant. Let {0, 1} be a corruption vector with ‖{0, 1}‖0 ≤ αn, α ≤ C.

Let y = Xw∗ + {0, 1} be the observed responses, and β ≥ α be the active set threshold

given to the Algorithm 2 of Bhatia et al. (2015).
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Suppose X satisfies the SSC property at level 1− β and SSS property at level β, with

constants λ1−β and and Λβ respectively. If the data (X,y) are such that
4
√

Λβ√
λ1−β

< 1, then

after t iterations, Algorithm 2 of Bhatia et al. (2015) with active set threshold β ≥ α obtains

a solution wt ∈ Rd such that

‖wt −w∗‖2 ≤
‖{0, 1}‖2√

n
exp(−ct)

for large enough n.

We are ready to prove Proposition 5.5.5.

Proof of Proposition 6.4.2. Let vec(Ĥ ′) be as in Algorithm 5, and y = vec(Ĥ ′). Notice

y = vec(H) + vec(H ′ − H) + vec(Ĥ ′ − H ′). Let {0, 1} := vec(H ′ − H) be the corruption

vector due to strategic negotiations and r = vec(Ĥ ′ −H ′) be the residual vector. Recall:

vec(Ĥ ′) = arg min
v∈Rn2

‖vec(W ′)−K−1v‖2
2.

Since K−1 is full rank, vec(Ĥ ′) = Kvec(W ′) = vec(H ′), so r = 0.

Next, we apply Theorem 5.8.8. Let X̃ = X⊗X. Notice that ‖{0, 1}‖0 ≤ 2ns−s2 = β

since (H ′ − H)i,j is zero if i, j 6∈ S. Therefore the fraction of corrupted entries is at most

β = 2|S|
n
− |S|2

n2 ≤ 1. Therefore, if C is the constant in Theorem 5.8.8, then α ≤ C if and only

if |S| ≤ C ′n for some constant C ′ depending on C.

Further, the design matrix X̃ satisfies the required SSC and SSS conditions. Therefore,

after T iterations, Algorithm 5 obtains B̂ such that:

‖vec(B̂ + B̂T − (B +BT ))‖2 ≤
exp(−cT )

n
‖vec(H ′ −H)‖F

5.8.6 Estimating the set of strategic agents

Proposition 5.8.9. Under the conditions of Proposition 6.4.2, let bmin be the least nonzero

entry of (H ′ −H) in absolute value and T > 0. Then there exist constants ρ, C > 0 such that

if bmin satisfies:

|bmin| > exp(−ρT )‖{0, 1}‖2

then Algorithm 5 with threshold parameter β = 2n|S|−|S|2
n2 and T iterations of Torrent

recovers S exactly.
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Proof. We proceed by analyzing the residual matrix R of Algorithm 5.

Let η =
4
√

Λβ√
λ1−β

. We have η < 1 by assumption, so let ρ = 1 − η > 0. Recall that

Torrent maintains a set St ⊂ [n2] called the active set, which is its guess at iteration t

for what indices of the response vector vec(H ′) are non-corrupted. Let B̂(t) ∈ Rd×d be the

estimate of Torrent at iteration t. Let b(t) = vec(H ′)− 1
2
(X ⊗X)vec(B̂(t) + B̂(t)) be the

residual at iteration t, and bSt ∈ Rn2 be the coordinate projection vector such that:

bSt;i =

{
eTi b

(t) i ∈ St
0 otherwise

From the proof of Bhatia et al. (2015) Theorem 10, we obtain that if St+1 is the active

set at time t+ 1, then:

‖bSt+1‖2 ≤ η‖bSt‖2,

Successively applying the inequality and noting that the first estimated active set

S0 = [n]2, we have that:

‖bSt+1‖2 ≤ ηt+1‖b‖2

≤ exp(−ρt)‖b‖2

By assumption on bmin, the above event can only occur if ‖bSt+1‖2 = 0. Hence ‖bST ‖2 = 0,

so the final active set ST must be a subset of the non-corrupted entries of b. Hence

Rij = 0 if i 6∈ S, j 6∈ S. Further, since ST is the output of a hard-thresholding operation,

|ST | = (1− β)n2 = 2sn− n2. Therefore, after a permutation, the residual matrix is precisely

R =

[
1s1

T
s 1s1

T
n−s

1n−s1
T
s 0n−s0

T
n−s

]
.

A calculation shows that R is rank-two with nonzero eigenvalues s(1±
√

(4n/s)−3)

2
. Let λ2 be

the lesser eigenvalue. The corresponding eigenvector v2 has entries a, b at indices {1, 2, . . . , s}
and indices {s + 1, . . . , n} respectively, where a =

1−
√

(4n/s)−3

2
, b = 1. Let S1, S2 be as in

Algorithm 5. We have that S1 = S and S2 = [n] \ S by Rohe et al. (2011).

Since β = 2n|S|−|S|2
n2 , it follows that

√
8βn+1

4
is closer to |S| than n− |S|, so the output

Ŝ is S1 = S.
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5.8.7 Proof of Proposition 5.4.2

Proof of Proposition 5.4.2. We first analyze the global welfare under W ′ versus W .

Let W ′ be the outcome under strategic negotiations with S = [n] and W be the

outcome under honest negotiations. Let ∆ be such that M ′ = M + ∆. Let L,K, T,Π be

as in Definition 5.3.6. Notice that vec(W ′) = Lvec(M ′) and vec(W ) = Lvec(M). Moreover,

we can simplify Lvec(M) as follows. Let M = H + H̃ where H := 1
2
(M + MT ) is the

symmetric part of M and H̃ is the skew-symmetric part. Notice that Lvec(H + H̃) =

K−1(1
2
I + 1

2
Π)vec(H + H̃) = K−1vec(H).

Therefore, by Lemma 5.8.3, we see that:
n∑

k=1

gk(W
′, P ′) =

n∑

k=1

gk(W
′, P ′)

=
n∑

k=1

[
− 〈δk,w′k〉+ 〈w′k,Σw′k〉

]

= 〈−∆,W ′〉F + tr(W ′ΣW ′)

= 〈ΣW ′ −∆,W ′〉F

In the honest case we have ∆ = 0, so:
n∑

k=1

gk(W,P ) = 〈ΣW,W 〉F

= 〈(I ⊗ Σ)vec(W ), vec(W )〉

= 〈K−1vec(H), (I ⊗ Σ)K−1vec(H)〉

For the strategically negotiated equilibrium, we first simplify ∆. Let y be as in

Algorithm 4, so that vec(∆) = T−1y. Let DL ∈ Rn2×n2 be block diagonal with n×n diagonal

blocks equal to those of L, and zero elsewhere. From inspection, we see that:

T = DL +DT
L + 2DT

L(I ⊗ Σ)DL + (L−DL)− 2DT
L(I ⊗ Σ)(L−DL)

= DT
L + L− 2DT

L(I ⊗ Σ)L

Similarly,

y = (2DT
L(I ⊗ Σ)− In2)vec(W )

= (2DT
L(I ⊗ Σ)− In2)Lvec(M)
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Therefore, let A2 = (2DT
L(I ⊗ Σ)− In2) and A = T−1A2L so that:

vec(∆) = Avec(M) = T−1A2Lvec(M)

Then, let A3 = T−1A2. Note that A3 corresponds to the matrix C in the statement of the

Proposition. The total utility at (W ′, P ′) is:
n∑

k=1

gk(W
′, P ′) = 〈ΣW ′ −∆,W ′〉F

= vec(M)T
(

(I + A)TLT (I ⊗ Σ)L(I + A)− AT (L+ LA)

)
vec(M)

= (K−1vec(H))T
(

(I + AT3L
T )(I ⊗ Σ)(I + LA3)− AT3 (I + LA3)

)
K−1vec(H)

= K−1vec(H))T (I ⊗ Σ)K−1vec(H) +K−1vec(H))TY K−1vec(H))T ,

where we define Y as:

Y := 2(I ⊗ Σ)LA3 + AT3L
T (I ⊗ Σ)LA3 − AT3 (I + LA3).

Then, let:

γ :=
K−1vec(H)TY K−1vec(H)T

K−1vec(H)T (I ⊗ Σ)K−1vec(H)T
.

We see that:

PoS =
1

1 + γ

Note that 1 + γ ≥ 0 always, since utilities cannot be negative. However, we may have

γ ∈ (−1, 0).

We will upper bound |γ|. The matrix I ⊗ Σ has eigenvalues λ1, . . . , λn each with

multiplicity n. Therefore:

|γ| ≤ ‖Y ‖2

λn

It remains to upper bound ‖Y ‖2.

First, notice that Π(v ⊗w) = w ⊗ v for any v,w ∈ Rn. Let Σ =
∑n

i=1 λiuiu
T
i for

λ1 ≥ · · · ≥ λn > 0. By properties of Kronecker products Horn and Johnson (2008),

K−1 =
n∑

i=1

n∑

j=1

1

2(λi + λj)
(ui ⊗ uj)(ui ⊗ uj)T .
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Therefore, since L = 1
2
(K−1 +K−1Π), we have the following.

L =
n∑

i=1

n∑

j=1

1

2(λi + λj)
(ui ⊗ uj)(ui ⊗ uj + uj ⊗ ui)T

(I ⊗ Σ)L =
n∑

i=1

n∑

j=1

λj
2(λi + λj)

(ui ⊗ uj)(ui ⊗ uj + uj ⊗ ui)T

LT (I ⊗ Σ)L =
n∑

i=1

n∑

j=1

λj
4(λi + λj)2

(ui ⊗ uj + uj ⊗ ui)(ui ⊗ uj + uj ⊗ ui)T

We see that ‖L‖ ≤ 1
2λn

, ‖(I ⊗ Σ)L‖2 ≤ 1, and ‖LT (I ⊗ Σ)L‖2 ≤ 1
4λn

. Therefore, by triangle

inequality and sub-multiplicativity of operator norms,

‖Y ‖2 ≤ ‖A3‖2

(
‖2(I ⊗ Σ)L‖2 + 1

)
+ ‖A3‖2

2

(
‖LT (I ⊗ Σ)L‖+ ‖L‖

)

≤ 3‖A3‖2 +
3

4λn
‖A3‖2

2

If ‖A3‖2 ≤ 1
10
λn, then |γ| < 1

2
. Therefore,

PoS =
1

1 + γ

≤ 1

1− |γ|
≤ O(1).

5.9 Analysis of Model Networks

In this section we will prove Proposition 5.9.3 that characterizes Example 5.4.3, and

also analyze an additional model network.

5.9.1 Two Agents That Can Self-Invest

Consider a network with two agents (P1 and P2) who can form a contract with each

other, and each can invest in themselves (“self-invest”). The network setting is as follows.

M =

[
M11 M12

M21 M22

]
, Σ =

[
1 ρ
ρ 1

]
, Γ =

[
1 0
0 1

]
(5.11)

The parameter ρ ∈ (−1, 1) is the correlation between an agent’s returns from self-investment

versus trading. For ρ ≈ 1, returns from self-investing and trading move in lockstep. So, each
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Figure 5.7: Nash equilibria for two agents: The utility for either agent when both are honest
(solid line) is higher than when both are strategic (dashed line). When only agent P1 is
strategic, P1 gains the highest utility (dotted circles) while P2’s utility is lowest (dotted
squares). The network settings are shown in the bottom row, with an arrow from i to j
corresponding to Mji.

agent must hedge between self-investing and trading, hoping to benefit from any differences

in their returns. But as ρ goes to −1, the risks from self-investing and trading offset. If both

offer positive returns, an agent can gain nearly risk-free reward. Hence, negative correlations

can lead to higher utility for agents.

Theorem 5.9.1. Consider the network setting of Eq. 5.11. Let κ := ρ(M11 +M22)− (M12 +

M21), and let ∆ be the negotiation positions (Definition 5.3.1) for all agents at the Nash

equilibrium.

1. If only agent k is strategic, then

∆ij =

{
κ/3 if i 6= k, j = k

0 otherwise

2. If both agents are strategic, then

∆ij =

{
κ/4 if i 6= j

0 otherwise

Remark 5.9.2. We can show that it is strategic for i to report ∆ii = 0 even if Σ1;1 6= Σ2;2

and Γ11 6= Γ22.
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Figure 5.7 shows the agents’ utility for honest versus strategic negotiating positions

over a range of ρ. We can make several observations.

Strategic agents report self-investing returns truthfully. Suppose agent i claims that

her self-investments have higher returns than in reality (that is, M ′
ii > Mii). If agent j wants

to trade with i, then j will have to offer better trading terms via better prices. Thus, high

self-investing returns are a plausible negotiating strategy. However, Theorem 5.9.1 shows

that ∆ii = 0 at the Nash equilibrium, so M ′
ii = Mii. This is because if both agents make

untrue claims about self-investing, they get smaller contracts, lowering utility.

Payments to others can increase when the agent becomes strategic. It may appear

that strategic agents can only increase their utility by extracting higher payments from others.

However, this need not be true. Suppose both agents have a utility of 1 from self-investing

and 0 from trading. By symmetry, if both agents are honest, they make no payments. Now,

suppose only agent P1 is strategic and ρ ≈ 1. By Theorem 5.9.1, P1 will claim to have higher

returns from trading than her actual returns. This implies that P1 pays P2 during contract

formation. But the contract size also changes. With the new contract size, P1 still gains

utility at the expense of P2.

Utility is lower when both agents are strategic. Figure 5.7 shows several instances

where the agents are worse off when both are strategic versus when both are honest. This is

because the agents face a Prisoner’s Dilemma. If both are honest, they cooperate, and both

gain high utility. However, being strategic is a dominant strategy. This forces both to be

strategic, leading to lower utility for both.

Negative correlations amplify the effect of negotiating positions. Suppose self-

investing and trading both have positive expected returns. When correlations are negative,

their risks cancel while their returns add. So, an agent can take large positions and achieve

high utility. But, as noted in the previous paragraph, there is a drop in utility when both

agents are honest versus strategic. We find a larger drop for negative correlations. Hence,

under negative correlations, the effect of strategic behavior is also more pronounced.
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5.9.2 One Investor and Two Hedge Funds (Example 5.4.3)

Recall Example 5.4.3. We have a 3-agent network where one investor interacts with

two hedge funds under the following network setting.

M =




0 a a
m 0 0
m 0 0


 , Σ =




1 0 0
0 1 ρ
0 ρ 1


 , Γ = I. (5.12)

The first column corresponds to the investor, and the others to the hedge funds. Under this

setting, the hedge funds do not want to trade with each other, and none of the agents want

to self-invest. Also, the hedge funds are correlated with each other (via ρ), and uncorrelated

with the investor.

The optimal negotiating positions are as follows.

Proposition 5.9.3 (Restatement of Proposition 5.9.3). Consider the the network setting of

Eq. 5.3, where strategic agents can only modify the non-zero entries in their column of M .

Define

ν =
1

2

(
1

2− ρ +
1

2 + ρ

)
, η =

1

2

(
1

2− ρ −
1

2 + ρ

)
,

ζ =
ν − η

ν + (ν − η)(1− ν)
.

1. Honest investor and strategic hedge funds (S = {2, 3}):

M ′
21 = M ′

31 = m, M ′
12 = M ′

13 =
aν −m(1− ν)(ν − η)

ν + (1− ν)(ν − η)
.

2. All agents strategic (S = [n]):

M ′
21 = M ′

31 =
m− aζ
1 + ζ

,

M ′
12 = M ′

13 =
aν −M ′

21(1− ν)(ν − η)

ν + (1− ν)(ν − η)
.

We first discuss insights from Proposition 5.9.3 and Figure 5.2b of the main text, and

then give the proof.

The investor’s utility is very sensitive to her negotiating position. Suppose the

investor is honest and both hedge funds are strategic. Then, the investor will accept worse

terms from the funds and achieve less utility. But the situation is reversed if the investor is
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also strategic (Figure 5.2b). The investor now achieves higher utility than either fund. Thus,

the investor’s outcome is very sensitive to her negotiating position.

The sensitivity to negotiating positions increases as ρ→ −1. Figure 5.2b shows that

when ρ decreases, the investor loses utility if she is honest but gains utility if she is strategic.

The reason is that as ρ→ −1, the investor wishes to invest almost equally in both funds to

reduce her risk. The hedge funds only form one contract each. Since they cannot hedge their

risk, they prefer much smaller contracts than the investor. The investor can extract higher

payments for this, increasing her utility.

Strategic behavior can reduce utility. Suppose the investor is honest. As ρ ≈ −1, the

hedge funds are worse off being strategic than if they were both honest (Figure 5.2b). If

both funds are honest, their contract sizes match their risk preference. However, if both are

strategic, each fund worries about its competitor. So, both funds end up with worse terms.

We prove Proposition 5.9.3 Part 1 in Corollary 5.9.8, and Part 2 in Proposition 5.9.9

below. Throughout the remainder of this section, we will refer to the investor as P1 and the

hedge funds as P2 and P3. Hence P1 has beliefs according to Me1, and so on.

Proposition 5.9.4. Assume that P1 reports M21,M31 as m̃, P2 reports M12 as ã, and P3

reports M13 as b̃. Then w21 = 0.5 · (α̃+ ãν − b̃η) and w31 = 0.5 · (α̃+ b̃ν − ãη) for α̃ = m̃
2+ρ

.

Proof. Notice that Σ has eigenvalues λ1 = 1, λ2 = 1 + ρ, λ3 = 1 − ρ and corresponding

eigenvectors v1 = (1, 0, 0)T ,v2 = 1√
2
(0, 1, 1)T ,v3 = 1√

2
(0, 1,−1)T . Therefore 2−1/2(w2 +w3) =

Wv2. Let M̃ be the matrix of reported values, so M̃21 = M̃31 = m̃, M̃12 = ã, and M̃13 = b̃.

All other entries of M̃ are zero.

From Theorem 5.2.2, the resulting network is W =
∑

i,j∈[3]

vTi (M̃+M̃T )vj
2(λi+λj)

vivj . By orthogo-

nality of eigenvectors, we have:

Wv2 =
∑

i

vTi (M̃ + M̃T )v2

2(λi + λ2)
vi

Only the term at i = 1 is nonzero, and therefore 2−1/2(w2 + w3) = 2m̃+ã+b̃
2
√

2(2+ρ)
e1. Similarly,

2−1/2(w2 −w3) = ã−b̃
2
√

2(2−ρ)
e1. The conclusion follows.
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Proposition 5.9.5. Let α̃ be as in Proposition 5.9.4. Assume P1 reports µ̃, and P3 reports

b̃. The optimal choice of reported ã for P2 is:

ã∗ = ca + sb̃

For ca = aν−α̃(1−ν)
ν(2−ν)

and s = η(1−ν)
ν(2−ν)

.

Proof. Let w := w21 for shorthand. The utility of firm 2, by Lemma 5.8.3, is given by:

g2 = −w(ã− a) + w2

= w(a− ã+ w)

2g2 = (α̃ + ãν − b̃η)(a+ (0.5ν − 1)ã+ 0.5α̃− 0.5b̃η)

The coefficient of ã2 in g2 is ν(0.5ν − 1). Since ν > 0 and 0.5ν < 1 for all ρ ∈ (−1, 1), the

Hessian of g2 with respect to ã is negative definite, and so the optimal choice of a is at the

critical point ∂g2
∂ã

= 0. Solving for ã gives:

ã∗ = ca + sb̃,

with ca, s as in the statement of the proposition.

A symmetric argument gives the following.

Proposition 5.9.6. Let α̃ be as in Proposition 5.9.4. Assume P1 reports µ̃, and P2 reports

ã. The optimal choice of reported b̃ for P3 is:

b̃∗ = cb + sã

For ca = bν−α̃(1−ν)
ν(2−ν)

and s = η(1−ν)
ν(2−ν)

.

Next, we can solve for the Nash equilibria given the reported m̃ of the investor.

Proposition 5.9.7. If M12 = M13 = a, then let c := ca = cb and s be as in Proposition 5.9.5

and 5.9.6. Assume P1 reports µ̃. The Nash equilibrium for P2, P3 is to report:

M ′
12 = M ′

13 =
c

1− s
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Corollary 5.9.8 (Proposition 5.9.3 Part 1). Assume P1 reports m̃. If both hedge funds are

strategic, then the Nash equilibrium for P2, P3 is to report:

M ′
12 = M ′

13 =
aν − m̃(1− ν)(ν − η)

ν + (1− ν)(ν − η)

Hence if m̃ = m, then M ′
12 = M ′

13 are as in Proposition 5.9.3.1.

Proof. We simplify aNS = c
1−s as follows.

c

1− s =
aν − α̃(1− ν)

ν(2− ν)(1− s)

=
aν − α̃(1− ν)

ν(2− ν)
(
1− η(1−ν)

ν(2−ν)

)

=
aν − m̃(1− ν)(ν − η)

ν(2− ν)− η(1− ν)

=
aν − m̃(1− ν)(ν − η)

ν + (1− ν)(ν − η)

In the setting of Proposition 5.9.3.1, the investor reports m̃ = m. The conclusion follows.

Next, we solve for the optimal report of the investor if all agents are strategic.

Proposition 5.9.9 (Proposition 5.9.3 Part 2). Let y = 1
2(2+ρ)

. If all agents are strategic,

then the optimal reported m̃ for the investor is:

M ′
21 = M ′

31 =
m− aζ
1 + ζ

For ζ = ν−η
ν+(ν−η)(1−ν)

= (1− 2y(1 + ρ)). The optimal report for the hedge funds is:

M ′
12 = M ′

13 =
aν −M ′

21(1− ν)(ν − η)

ν + (1− ν)(ν − η)

Proof. From Proposition 5.9.7 and 5.9.4, we know w12 = w13. Therefore by Lemma 5.8.3, if

P1 reports m̃ then the investor utility is:

g1(m̃) = 2(m− m̃)w12 + w2
12(2 + 2ρ)
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Let w12 = (c2 + m̃y) for shorthand. Then g1 is quadratic in m̃ and the coefficient of m̃2 is

2y2 + 2ρy2 − 2y = −(ρ+3)
2(ρ+2)2

< 0. Therefore, the optimal m̃ is at the critical point ∂g1
∂m̃

= 0. This

is given as:

m̃ =
−c2 +my + 2c2y(1 + ρ)

2y(1− y(1 + ρ)

=
m− (c2/y)(1− 2y(1 + ρ))

2(1− y(1 + ρ))

=
m− (c2/y)(1− 2y(1 + ρ))

1 + (1− 2y(1 + ρ))

We simplify the terms (c2/y), 2y(1 + ρ) as follows. First, notice that c2 = ν−η
2
· aν
ν(1−ν)(1−s) ,

where a is true value of M12 and M13 for the hedge funds. Let c1 := aν
ν(1−ν)(1−s) for shorthand,

so that c2 = ν−η
2
c1. Next,

c2

y
=

c1

ν − η

=
a

(2− ν)(1− s) ·
2(ν − η)

2(2 + ρ)−1(1− (ν − η)x)

=
a

(2− ν)(1− s)

·
(

1− (ν − η) · 1− ν
ν(2− ν)(1− s)

)−1

=
aν

ν(2− ν)(1− s)− (ν − η)(1− ν)

=
aν

ν(2− ν)− η(1− ν)− (ν − η)(1− η)

=
aν

ν

= a
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Moreovoer,

1− 2y(1 + ρ) = 1− 2(c2/a)(1 + ρ)

= 1− (1 + ρ)
c1(ν − η)

a

= 1− (1 + ρ) · a

(2− ν)(1− s)
(ν − η)

a

= 1− (ν − η)(1 + ρ)ν

ν(2− ν)− η(1− ν)

= 1− ν(ν − η)(1 + ρ)

ν + (ν − η)(1− ν)

= 1− ν(ν − η)((2 + ρ)− 1)

ν + (ν − η)(1− ν)

= 1− ν − ν(ν − η)

ν + (ν − η)(1− ν)

=
ν − η

ν + (ν − η)(1− ν)

Let ζ := ν−η
ν+(ν−η)(1−ν)

= 1− 2y(1 + ρ). The optimal m̃∗ = m−aζ
1+ζ

.

Finally, substituting this m̃∗ into Corollary 5.9.8 gives the optimal reports for the

hedge funds.

5.10 Additional Experiments

In this section, we describe additional results from negotiations on international trade

networks. We visualize the utility of specific agents at all timesteps under various scenarios,

and discuss the implications. The main takeaway is that when a lone actor is strategic, then

they are better off than when they were honest. Moreover, the strategic actor gains utility at

the expense of others.

Figure 5.8 illustrates strategic behavior by the UK, and its effect on UK and another

large economy (the Netherlands) which is generally worse off. We find that the Netherlands

is worst-off when all are strategic, and best off if all are honest. Moreover, each strategic

actor is best-off when they are the lone strategic actor.

For different choices of lone strategic actor, such as the US (Figure 5.9) and India

(Figure 5.10), we obtain analogous results to Figure 5.8.
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Figure 5.8: Effect of strategic trading on the UK (top) and Netherlands (bottom): The UK’s
utility is highest when it is the only strategic agent, and lowest when all are honest (the
observed network). However, the pattern changes in the last quarter, where the utility when
all are strategic is worse than when all are honest. The Netherlands has the highest utility
when all others are honest, unlike the UK.
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Figure 5.9: Effect of strategic trading on the US (top) and Netherlands (bottom): The US’s
utility is highest. The Netherlands has the highest utility when all others are honest, unlike
the UK.

5.11 Experimental Details
5.11.1 Learning Experiments

In all learning experiments, we generate random X,B,Σ as follows. X ∈ Rn×d has

rows that are iid Dirichlet(1/d, . . . , 1/d). B ∈ Rd×d is symmetric, with Bij ∼ N(5, 1) for

i ≥ j and Bji = Bij for i < j. Σ = XBΣX
T + εIn for random BΣ ∈ Rd×d and ε = 10−3. The

BΣ is generated as BΣ = UDUT for U ∈ Rd×d having d random orthonormal columns, and

D diagonal with iid Uniform(1,
√
n) entries on the diagonal.

Given the network setting (B, I,Σ, X) with some number of strategic agents s ∈ [n],

we generate random S ⊂ [n] of size s, uniformly at random from all subsets of size s. Then,

we generate negotiating positions M ′ based on Algorithm 4.

Our impelementation of spectral clustering is as follows. We compute the eigenvector
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Figure 5.10: Effect of strategic trading on India (top) and Netherlands (bottom): India’s
utility is highest. The Netherlands has the highest utility when all others are honest, unlike
the UK.

v2 ∈ Rn corresponding to the least nonzero eigenvalue λ2 of R, and then assigns S1, S2 to

the positive and negative indices of v2 respectively. We solve for s from β, n, and then return

Ŝ = S1 if |S1| > s and Ŝ = S2 otherwise.

5.11.2 Negotiations on International Trade Networks

We use the same international trade dataset as Jalan et al. (2024a). Specifically,

we use international trade statistics from the OECD to get quarterly measurements of

bilateral trade between 46 large economies, including the top 15 world nations by GDP

OECD (2022) Jalan et al. (2024a). The data are available at the OECD Statistics webpage

(https://stats.oecd.org/). The data are measured quarterly from Q1 2010 to Q2 2022.

We take the sum of trade flows i→ j and j → i. The diagonals Wii = 0 for all i.

Given these measurements, which we denote as Wt ∈ R46×46 for t = 1, 2, . . . , 46, we
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solve for a covariance matrix Σ � 0 using the Semidefinite Programming algorithm of Jalan

et al. (2024a). This Σ is fixed and used throughout the experiments of Section 5.6.

5.11.3 Compute Environment

All experiments were performed on a Linux machine with 48 cores running Ubunutu

20.04.4 OS. Each CPU core is an Intel(R) Xeon(R) CPU E5-2695 v2 (2.40GHz). The

architecture was x86. Total RAM was 377 GiB.

The total time to generate experimental results was approximately 24 hours of wall

time with parallelization. See our code submission for the exact scripts.
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Chapter 6: Opinion Dynamics with Multiple Adversaries

6.1 Introduction

Over the past decade, social media has experienced rapid growth in both usage and

significance. Online social networks, which allow users to share updates about their lives

and opinions with a broad audience instantaneously, are now utilized by billions of people

globally. These platforms serve various purposes, such as being informed about politics,

news, health-related updates, products, and many more (Backstrom et al., 2012; Young, 2006;

Banerjee et al., 2013; Shearer and Mitchell, 2021).

Unfortunately, networks can induce polarization, with the network connections serving

as a pathway for social discord to increase Musco et al. (2018b); Chen and Rácz (2021b);

Wang and Kleinberg (2024); Gaitonde et al. (2020a). This is a well-studied sociological

phenomenon called the filter-bubble theory (Pariser, 2011). The filter-bubble theory argues

that personalized algorithms used by online platforms, such as search engines and social media,

selectively display content that aligns with a user’s past behaviors, preferences, and beliefs.

This customization creates an “invisible algorithmic editing” of the web, isolating individuals

within their own ideological bubbles where they encounter only information that reinforces

their existing views. As a result, users are less likely to be exposed to diverse perspectives,

potentially narrowing their worldview and fostering polarization. Pariser (2011) warns that

such bubbles undermine democratic discourse by limiting opportunities for individuals to

engage with challenging or unfamiliar ideas.

Additionally, social networks can be manipulated by malicious entities in order to

create discord and cause disagreement. For instance, the 2017 indictment of the Russian

Internet Research Agency (IRA) by the U.S. Department of Justice Special Counsel’s Office

alleged that the IRA leveraged multiple social media accounts and targeted advertising to

achieve “a strategic goal to sow discord in the U.S. political system, including the 2016 U.S.

presidential election” (Mueller, 2018). In 2019, Twitter, Inc. (2019) disclosed that at least

936 accounts attempted to induce discord in Hong Kong, to e.g. hinder protesters’ ability

The content of this chapter is under review at the 26th ACM Conference on Economics and Computation
(ACM EC 2025), and can be cited as Jalan and Papachristou (2025).
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|S| = 1 |S| = 4

Figure 6.1: Visualization of the strategic equilibrium (z′) on the Karate Club Graph for two
different choices of S. The truthful intrinsic opinions have been taken to be s = u2 where u2

is the Fiedler eigenvector of G. The white nodes correspond to the nodes in S. For the other
nodes, the nodes colored in blue (resp. red) correspond to nodes whose public opinion z′i
increased (resp. decreased), i.e., (z′i − zi)/zi ≥ 0 (resp. (z′i − zi)/zi < 0) after s′ was chosen.

to organize effectively during the independence movement. As social media continues to

proliferate, it is likely that these types of external interferences will become increasingly

common. Additionally, networks of Facebook pages have targeted Americans with sports

betting scams, amplifying their reach by disseminating provocative conspiracy theories about

political figures and natural disasters (Bjork-James and Donovan, 2024). These schemes

leverage the economics of the internet, where engagement with inflammatory content is

monetized, and social media algorithms inadvertently amplify such content, enabling bad

actors to exploit audiences for profit.

To model the opinions’ evolution, computer scientists, sociologists, and statisticians

have relied on the framework of opinion dynamics where the users’ opinions coevolve according

to a weighted network G = (V,E,w), and each user updates their opinion as a combination

of their own intrinsic opinion as well as the opinions of their neighbors (Friedkin and Johnsen,

1990). This model of opinion exchange has the advantage of taking into account both network

interactions and their own intrinsic opinion. So far, all of the existing works consider a single

actor who has the ability to act on the network to induce disagreement or polarization Musco

et al. (2018b); Chen and Rácz (2021b); Wang and Kleinberg (2024); Ristache et al. (2024);

Gaitonde et al. (2020a); Rácz and Rigobon (2023); Chitra and Musco (2020).

In this work, we lift the assumption of requiring a single actor (such as the platform)

to act as an adversary to induce polarization or disagreement and consider the case of several
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decentralized actors. It is known that empirically, a very small percentage (25%) of the users

in a network need to disagree to sway consensus (Centola et al., 2018). Moreover, real-world

social networks involve multiple malicious actors, who use different levels of manipulation

and hate speech based on their individual goals (Bjork-James and Donovan, 2024). In this

paper, we attempt to provide a theoretical basis for this phenomenon: specifically, in our

setting, we assume that there is a set S ⊆ V of strategic agents whose goal is to report false

intrinsic opinions (s′) that are different from their true intrinsic opinions (s 6= s′). Their goal

is to influence others while not deviating much from their neighbors; namely, they want to

reach an equilibrium where their neighbors agree with them.

For instance, assume a social network where a set of S of political actors want the

network to believe that their stance on a topic (e.g., abortion, elections, drug legalization,

etc.) is the best. They achieve this by adversarially reporting different intrinsic opinions.

This ensures that their influence is both persuasive and credible within the local network

context. Such adversarial behavior can result in significantly different (cf. Figure 6.1) and

highly polarized equilibria, where the strategic agents’ opinions appear dominant despite not

reflecting the actual intrinsic views of the majority.

Our work investigates the conditions under which these strategic manipulations are

successful, the extent of their impact on network-wide opinion dynamics, and how platforms

can learn from observing these manipulated equilibria to mitigate such impacts.

6.1.1 Our Contributions

In this paper, we ask the following research question (RQ):

(RQ) What if a set of strategic actors with possibly conflicting goals tries to
manipulate the consensus by strategically reporting beliefs different than their true
beliefs?

We rely on the Friedkin-Johnsen (FJ) model (Friedkin and Johnsen, 1990), where the

opinions of agents coevolve via the help of a weighted undirected network G = (V = [n], E, w)

with non-negative weights. The intrinsic opinions are given by s ∈ Rn, where si ∈ R is the

intrinsic opinion of agent i. According to the FJ model, the agents possess intrinsic opinions

s and express opinions z ∈ Rn, which they update via the following rule for each agent i:
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zi(t+ 1) =
αisi + (1− αi)

∑
i∼j wijzj(t)

1 +
∑

i∼j wij
. (6.1)

where αi ∈ (0, 1) is i’s susceptibility to persuation (Abebe et al., 2018). The scalar zi
is the expressed opinion of agent i, which can be different from their intrinsic opinion si.

We additionally define α̃i = αi/(1− αi) to be the normalized susceptibility parameter

corresponding to i. The update rule of Eq. (6.1) corresponds to the best-response dynamics

arising from minimizing the quadratic cost function for each i (Bindel et al., 2011; Abebe

et al., 2018):

ci(zi, z−i) = (1− αi)
∑

i∼j

wij(zi − zj)2 + αi(zi − si)2. (6.2)

The Pure Strategy Nash Equilibrium (PSNE) can be written as z = ((I − A)L +

A)−1As = Bs where L is the Laplacian of graph G, A = diag(α1, . . . , αn) is the diagonal

matrix of susceptibilities. When an external single actor aims to induce disagreement or

polarization – see, e.g., Gaitonde et al. (2020a); Racz and Rigobon (2022); Musco et al.

(2018b) – the adversary is tasked with optimizing the objective function

∑

i∈[n]

ci(zi, z−i) = sT ((I − A)L+ A)−1Af(L)((I − A)L+ A)−1As,

where f(L) is a function of the Laplacian of G, either with optimizing towards s

(Gaitonde et al., 2020a), or the graph itself (Musco et al., 2018b; Racz and Rigobon, 2022).

Usually, as we also discussed earlier, many adverse actions on social networks come from

several independent strategic adversaries who try to manipulate the network by infiltrating

intrinsic opinions s′i, which are different from their true stances si but are simultaneously

close to si. Unlike previous works, these “adversaries” can have conflicting goals.

Concretely, the true opinions of the agents are s1, ..., sn ∈ R, and there is a set S of

deviating agents who report {s′i}i∈S. The goal of the strategic agents is to minimize the cost

function of Equation (6.2) at consensus z′ = ((I−A)L+A)−1As′ where s′ is the vector which

has entries si for all i /∈ S and s′i for all i ∈ S. The local optimization of agent i becomes:
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min
s′i∈R

ci
(
z′ = ((I − A)L+ A)−1As′

)
. (6.3)

Our contributions are as follows.

Characterizing Nash Equilibria with Multiple Adversaries. We give the Nash equi-

librium of the game defined by Equation (6.3), and show that all Nash-optimal strategies are

pure. The Pure Strategy Nash Equilibrium (PSNE) that is given by solving a constrained

linear system. Given the PSNE of the game, we characterize the actors who can have the

most influence in strategically manipulating the network.

Real-World Experiments to Understand Properites of Equilibria. We apply our

framework to real-world social network data from Twitter and Reddit (Chitra and Musco,

2020), and data from the Political Blogs (Polblogs) dataset (Adamic and Glance, 2005). We

find that the influence of strategic agents can be rather significant as they can significantly

increase polarization and disagreement, as well as increase the overall “cost” of the consensus.

Analysis of Equilibrium Outcomes Under Different Sets of Strategic Actors. Var-

ious metrics for network polarization and disagreement are sensitive to the choice of who acts

strategically, in nontrivial ways. For example, adding more strategic agents can sometimes

decrease the Disagreement Ratio at equilibrium (Figure 6.5), due to counterbalancing effects.

To address the effects of manipulation, we give worst-case upper bounds on the Price of

Misreporting (PoM), which is analogous to well-studied Price of Anarchy bounds (see, for

example, Bhawalkar et al. (2013); Roughgarden and Schoppmann (2011)), and suggest ways

that the platform can be used to mitigate the effect of strategic behavior on their network.

Learning Algorithms for the Platform. We give an efficient algorithm for the platform

to detect if manipulation has occurred (Algorithm 6), based on a hypothesis test with the

publicly reported opinions z′. Next, we give an algorithm to infer who manipulated the

network (the set of strategic agents S) from z′, as long as the size of S is sufficiently small.

Our algorithm is inspired by the robust regression algorithm of Bhatia et al. (2015), and

is practical for real-world networks. It (i) requires the platform to have access to node
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embeddings X which have been shown computable even in billion-scale networks such as

Twitter (El-Kishky et al., 2022), and (ii) can be computed in time (n+m)O(1), where n is

the number of nodes and m is the number of edges of the network. Our algorithms have high

accuracy on real-world datasets from Twitter, Reddit, and Polblogs.

6.1.2 Preliminaries and Notations

The Laplacian of the graph G is denoted by L = D −W where W is the weight

matrix of the graph, which has entries wij ≥ 0, and D is the diagonal degree matrix with

diagonal entries Dii =
∑

i∼j wij. The Laplacian has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

For any undirected and connected graph G, L is symmetric and PSD, so we can write the

eigendecomposition of L as:

L =
∑

i∈[n]

λiuiu
T
i � 0, (6.4)

where u1, . . . ,un are orthonormal eigenvectors. Moreover, u1 = (1/
√
n)1, where 1

is the column vector of all 1s. U denotes the matrix which has the eigenvectors of L as

columns; i.e., such that L = UTΛU where Λ = diag(λ1, . . . , λn) is the diagonal matrix of

L’s eigenvalues. Li denotes the i-restricted Laplacian which corresponds to the Laplacian

of the graph with all edges that are non-adjacent to i being removed, and, similarly, L{u,v}
corresponds to the Laplacian of an edge {u, v}. Note that Li =

∑
i∼j L{i,j}. For a function

f(L) of the Laplacian we write f(L) = UTf(Λ)U where f(Λ) = diag(f(λ1), . . . , f(λn)). For

brevity, regarding the equilibrium z of the FJ model, we write B = ((I −A)L+A)−1A, such

that z = Bs and z′ = Bs′.

We define the total cost of an equilibrium z to be

C(z) =
∑

i∈[n]

ci(z). (6.5)

We define the platform-wide metrics to be

Polarization Ratio P(z) =
∑

i∈[n]

(zi − z̄)2, where z̄ =
1

n

∑

i∈[n]

zi, (6.6)

Disagreement Ratio D(z) =
∑

i,j∈[n]

wij(zi − zj)2 = zTLz. (6.7)

223



Finally, we define the “Price of Misreporting” (PoM), which is analogous to the Price

of Anarchy Roughgarden (2005). The PoM is the ratio of the cost C(z′) when the agents are

deviating, and the cost C(z) when the agents are reporting truthfully, i.e.,

PoM :=
C(z′)

C(z)
. (6.8)

Unlike the Price of Anarchy (PoA), the equilibrium z in the denominator of Eq. (6.8) is

the Nash equilibrium for the Friedkin-Johnson dynamics without manipulation. In the PoA,

the denominator would be C(z∗), where z∗ is a socially optimal equilibrium Bindel et al.

(2011). Since we study strategic manipulations as a meta-game with respect to the base game

of FJ dynamics, it is more relevant for us to compare z′ with z than with z∗. Note that

C(z∗) ≤ C(z) ≤ C(z′), so PoA ≥ PoM ≥ 1 always.

6.1.3 Related Work

Opinion Dynamics Opinion dynamics are well-studied in computer science and economics,

as well as sociology, political science, and related fields. There have been many models

proposed for opinion dynamics, such as with network interactions as we study in this paper

(FJ model) (Friedkin and Johnsen, 1990; Bindel et al., 2015), bounded confidence dynamics

(Hegselman-Krausse Model) (Hegselmann et al., 2002), coevolutionary dynamics (Bhawalkar

et al., 2013) as well as many variants of them; see, for example Abebe et al. (2018); Hązła et al.

(2019); Fotakis et al. (2016, 2023); Ristache et al. (2024). The work of (Bindel et al., 2011)

shows bounds on the Price of Anarchy (PoA) between the PSNE and the welfare-optimal

solution for the FJ model, and the subsequent work of Bhawalkar et al. (2013) shows PoA

bounds for the coevolutionary dynamics. Additionally, the opinion dynamics have been

modeled by the control community; see, for example, (Nedić and Touri, 2012; De Pasquale

and Valcher, 2022; Bhattacharyya et al., 2013; Chazelle, 2011).

As in these works, we treat the FJ model as a basis. However, our work is significantly

different as it studies a framework where any subset S ⊆ [n] of strategic agents can deviate

from their truthful intrinsic opinions, as opposed to studying the evolution of the expressed

opinions and their PSNE in the FJ model. In our model, each strategic agent i ∈ S can only

choose a single entry s′i of the overall deviation s′, but pays a cost based on the resulting

equilibrium (z′ = Bs′), which depends on the choices of other members of S.
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Disagreement and Polarization in Social Networks Motivated by real-world manipu-

lation of social networks in, e.g., the 2016 US election, a recent line of work studies polarization

and strategic behavior in opinion dynamics Gaitonde et al. (2020a, 2021); Chen and Rácz

(2021a); Wang and Kleinberg (2024); Ristache et al. (2024, 2025). Chen and Rácz (2021a)

consider a model in which an adversary can control k ≤ n nodes’ internal opinions and seeks

to maximize polarization at equilibrium. Similarly, Gaitonde et al. (2020a) considers a single

adversary who can modify intrinsic opinions s belonging to an `2-ball. More recent work

also studies modification of agents’ susceptibility parameters αi to alter the median opinion

at equilibrium Ristache et al. (2025). By contrast, we study a setting in which any subset

S ⊆ [n] can be strategic. Unlike previous works, these “adversaries” can have conflicting goals

in our model.

Manipulation of Dynamic Games. Opinion dynamics are a widely studied instance

of a network game, which is a game played by nodes in a network with payoffs depending

on the actions of their neighbors Kearns et al. (2001); Tardos (2004). In addition to the

manipulation of opinion dynamics, researchers have studied strategic manipulation of financial

network formation Jalan and Chakrabarti (2024). In the non-network setting, researchers have

studied the manipulation of recommendation systmes from a game-theoretic perspective Ben-

Porat and Tennenholtz (2018), as well as security games Nguyen et al. (2019), repeated

auctions Kolumbus and Nisan (2022b) and Fisher markers with linear utilities Kolumbus

et al. (2023).

Learning from Strategic Data. We develop learning algorithms which observe the

(possibly manipulated) equilibrium z′ to detect if manipulation occurred, and if so who

was responsible. The former problem relates to anomaly detection in networks. Chen and

Tsourakakis (2022) develop a hypothesis test to detect such fraud in financial transaction

neteworks, by testing if certain subgraphs deviate from Benford’s Law. Similarly, Agarwal

et al. (2020) propose a framework based on a χ2-statistic to perform graph similarity search.

The problem of recovering the set of deviators relates to the broader literature of

learning from observations of network games. Most works give learning algorithms for games

without manipulation Irfan and Ortiz (2014); Garg and Jaakkola (2016); De et al. (2016);

Leng et al. (2020a); Rossi et al. (2022); Jalan et al. (2024a). But our data z′ can be a
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manipulated equilibrium, which is a strategic sources of data Zampetakis (2020). Learning

algorithms for strategic sources are known for certain settings such as linear classifiers with

small-deviation assumptions (Chen et al., 2020a), or binary classifiers in a linear reward

model (Harris et al., 2023). When agents can modify their features to fool a known algorithm,

even strategy-robust classifiers such as Hardt et al. (2016) can be inaccurate Ghalme et al.

(2021). Since agents can deviate arbitrarily in our model, we use a robust regression method

with guarantees against adversarial corruptions (Bhatia et al., 2015), similar to the learning

algorithms in (Kapoor et al., 2019; Russo, 2023). The work of Jalan and Chakrabarti (2024)

studies learning from financial networks with strategic manipulations, which is in a similar

spirit to our work but differs significantly in the application domain and context.

6.1.4 Real-world Datasets

To support our results, we use data grounded in practice, which have also been used

in previous studies to study polarization and disagreement (cf. Musco et al. (2018a); Chitra

and Musco (2020); Wang and Kleinberg (2024); Adamic and Glance (2005)). Specifically,

we use Twitter, Reddit, and Political blog networks, summarized in Table 6.1 summarizes

these. Both the Twitter and Reddit datasets are due to Chitra and Musco (2020). The

vectors s of initial opinions for both are obtained via sentiment analysis and also follow the

post-processing of Wang and Kleinberg (2024).

(1) Twitter dataset. These data correspond to debate over the Delhi legislative assembly

elections of 2013. Nodes are Twitter users, and edges refer to user interactions.

(2) Reddit dataset. These data correspond to political discussion on the r/politics

subreddit. Nodes are who posted in the r/politics subreddit, and there is an edge between

two users i, j if two subreddits (other than r/politics) exist that both i, j posted on during

the given time period.

(3) Political Blogs (Polblogs) dataset. These data, due to Adamic and Glance (2005),

contain opinions from political blogs (liberal and conservative). Edges between blogs were

automatically extracted from a crawl of the front page of the blog. Each blog is either liberal,

where we assign a value si = −1, or conservative, where we assign si = +1.
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Network Nodes (n) Edges (m) Description
Twitter 548 3,638 User interactions during 2013 Delhi elections.
Reddit 556 8,969 User interactions in r/politics subreddit
Polblogs 1,490 16,178 Liberal and conservative blog network

Table 6.1: Summary of the social network datasets we use.

6.2 Strategic Opinion Formation

The opinion formation game has two phases. First, strategic agents privately choose a

strategic intrinsic opinion according to Equation (6.3). Second, agents exchange opinions

and reach consensus as if they were in the Friedkin-Johnson dynamics, except the strategic

opinions are used in place of the true intrinsic opinions.

1. Strategy Phase. Each strategic agent i ∈ S independently and privately chooses a

fictitious strategic opinion s′i ∈ R. For honest agents (i /∈ S) we have s′i = si.

2. Opinion Formation Phase. Reach equilibrium z′ = Bs′ as if s′ were the true intrinsic

opinions s.

The network G and the true beliefs s determine each agent’s utility. We pose the

following problem:

Definition 6.2.1 (Instrinsic belief lying problem.). Let S ⊆ [n] be a set of strategic agents.

If agent i ∈ S wants network members to express opinions close to si, what choice of s′i is

optimal and minimizes the cost function of Equation (6.3)?

The following theorem characterizes the Nash Equilibria of the Intrinsic Belief Lying

Problem.

Theorem 6.2.2 (Nash Equilibrium). Let Ti = (1−αi)(BTLiB) +αi(B
Teie

T
i B) ∈ Rn×n and

yi = αiBiisi. The Nash equilibria, if any exist, are given by solutions s′ ∈ Rn to the following

constrained linear system:

∀i ∈ S : eTi Tis′ = yi,

∀j 6∈ S : s′j = sj.

To illustrate the Theorem, we consider a toy example.
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Example 6.2.3 (Two-Node Graph). Consider a graph with 2 nodes and one edge with weight

w > 0. We set α1 = α2 = 0.5 for simplicity. Suppose that both agents deviate, i.e., S = [2].

Then, we can calculate B to be

B =
1

2w + 1

(
w + 1 w
w w + 1

)

and

z′0 =
(w + 1)s′0 + ws′1

2w + 1
, z′1 =

ws′0 + (w + 1)s′1
2w + 1

, (6.9)

yielding the two cost functions

c0(s′) =
1

2
w

(
s′0 − s′1
2w + 1

)2

+
1

2

(
(w + 1)s′0 + ws′1

2w + 1
− s0

)2

c1(s′) =
1

2
w

(
s′0 − s′1
2w + 1

)2

+
1

2

(
(w + 1)s′1 + ws′0

2w + 1
− s1

)2

.

Taking the first order conditions ∂c0
∂s′0

= 0 and ∂c1
∂s′1

= 0 we get a linear system whose

solutions are:

s′0 =
w2(s0 − s1) + (3w + 1)s0

3w + 1
, s′1 =

w2(s0 − s1) + (3w + 1)s1

3w + 1
.

Replacing these values back to the costs we get that

∀i : ci(s
′
0, s
′
1) =

1

2

w(w2 + 3w − 1)(s0 − s1)2

9w2 + 6w + 1
,

On the other hand, if all agents are honest, then the cost for each is:

∀i : ci(s0, s1) =
1

2

w(w + 1)(s0 − s1)2

(2w + 1)2
.

and the ratio of the two costs is at least max{1, w/3}.
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Next, we discuss some consequences of Theorem 6.2.2. First, we characterize s′ as the

solution to a linear system.

Corollary 6.2.4. Let T ∈ R|S|×n have rows {eTi Ti}i∈S given by Theorem 6.2.2. Let T̃ ∈
R|S|×|S| be the submatrix of T selecting columns belonging to S. Let y ∈ R|S| have entries

yi = αiBiisi as above. Let ỹ = y−∑j 6∈S sjTej. Then the set of Nash equilibria, if any exist,

are given by the solutions to the unconstrained linear system

T̃x = ỹ. (6.10)

The resulting opinions vector s′ is given by s′i = xi if i ∈ S and s′i = si otherwise.

Thus, in a Nash equilibrium, every strategic agent solves their corresponding equation

given by Equation (6.10). The explicit characterization of equilibria also implies that Nash

equilibria cannot be mixed.

Corollary 6.2.5 (Pure Strategy Nash Equilibria). The Nash equilibrium corresponds to

solving the system of |S| linear equations in the scalars {s′i|i ∈ S} given by Equation (6.10).

Also, all Nash equilibria are pure-strategy Nash equilibria.

Optimal Deviation for One Agent and All Agents Assuming that we have one

strategic agent, what is the change in their opinion? We can show that the new opinion is a

scalar multiple of the initial opinion plus a bias term, where neither the scalar multiple nor

the bias term can be zero.

Corollary 6.2.6 (Deviation for One Agent). Let S = {i}. Then, s′i = θisi + βi where

θi =
αiBii

(1− αi)
∑

i∼j wij(Bii −Bij)2 + αiB2
ii

> 0,

βi = −
αi
∑

j 6=iBijsj

(1− αi)
∑

i∼j wij(Bii −Bij)2 + αiB2
ii

.

Similarly, we can relate the maximum deviation of s′ from s in the other extreme

case, i.e., when all agents are deviating (S = [n]).
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Corollary 6.2.7. When all agents are deviating (S = [n]), and αi = α, then s′ satisfies:

‖s′‖2

‖s‖2

≤ λn + α̃

α̃
.

The proof of Corollary 6.2.7 shows that the adjusted susceptibility (α̃) and the

maximum eigenvalue of the Laplacian (λn) are responsible for changes in the norm of s′.

From classic spectral graph theory, we know that λn = Θ(dmax) where dmax is the maximum

degree of the graph; therefore, graphs with a lower maximum degree experience smaller

distortions. Also, regarding the susceptibility to persuasion, the distortion becomes 1 + o(1)

as long as α̃ = ω(dmax).

Equilibria for real-world datasets. Next, we discuss the results of experiments simulating

the strategically manipulated equilibria for our real-world datasets.

Effect of Susceptibility to Persuasion in Real-world Data Regarding real-world

data, Figure 6.2 shows the relationship between the truthful opinions (s and z) and the

strategic ones (s′ and z′) for the datasets, along with the corresponding correlation coefficient

R2, assuming that S consists of the top-50% nodes in terms of their eigenvector centrality,

for susceptibility parameters set to αi = 0.5 (equal self-persuasion and persuasion due to

others) and αi = 0.25 (higher persuasion due to others).

Regarding the public opinions, even though in the Reddit dataset, the strategic opinions

seem to be correlated with the truthful ones (R2 = 0.78 for αi = 0.25 and R2 = 0.94 for

αi = 0.5 respectively), in the Twitter dataset, we do not get the same result (i.e., R2 < 0.25).

Finally, in the Polblogs dataset, the situation is somewhere in the middle; when αi = 0.25 we

get a low R2 (R2 = 0.18) where for αi = 0.5 we get a high R2 (R2 = 0.74). Additionally, in

all cases except Twitter, we get that the effect is significant (P < 0.01).

Regarding the relationship between the intrinsic opinions, we do not detect any

significant effect in most cases except Reddit with αi = 0.5 (P < 0.01) and Twitter with

αi = 0.5 (P < 0.05).

Asymmetric Effects of Strategic Behavior on Liberals and Conservatives. Fig-

ure 6.3 analyzes the opinions of the strategic set S on the Polblogs dataset. Specifically, we

find that larger changes in sentiment happen across liberal outlets compared to conservative
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Figure 6.2: Plot of truthful intrinsic opinions (s) and strategic opinions (s′), and truthful
public opinions (z) compared to the strategic public opinions (z′) for the nodes belonging
to S. S is taken to be the top-50% in terms of their eigenvector centrality. In both cases
we have taken αi ∈ {0.25, 0.5} for all nodes. We fit a linear regression between s′ and s
(resp. between z and z′). We report the effect size θ which corresponds to the slope of the
linear regression and the P -value with respect to the null hypothesis (θ = 0). ∗∗∗ stands for
P < 0.001, ∗∗ stands for P < 0.01 and ∗ stands for P < 0.05.
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Figure 6.3: Strategic misreports for the Polblogs dataset where S is taken to be the top-50%
of the agents in terms of their eigenvector centralities. The nodes are labeled either as liberal
(si = −1) or conservative (si = +1), and we consider the nodes that change their beliefs as the
nodes for which z′i and zi do not have the same sign. In the scatterplots (a), (c), (d), (e), the
shape of each point indicates whether that user changed belief or not, and the color indicates
their true (intrinsic) opinion. Overall, we discover a higher amount of change among liberal
blogs compared to conservative ones (panel (b)). Additionally, we report the truthful/strategic
public opinion as a function of the logarithm of the eigenvector centrality πi (cf. panels (c, d))
for each node, as well as the absolute change |z′i−zi| (cf. panel (e)). We fit a regression model,
and we detect significant effects (∗∗∗ : P < 0.001, ∗∗ : P < 0.01, ∗ : P < 0.05; effects denoted
by θ) of the logarithm of the centrality to the truthful equilibrium z, the strategic equilibrium
z′, and the change |z′ − z|, revealing the structure of a power law. Finally, we observe that
relative changes are more dispersed along liberal sources compared to conservative sources
(c.f. panel F.
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ones. Additionally, the changes in the truthful/strategic opinions are related to the eigenvector

centrality πi as a power law, i.e., z′i ∝ πθi (P < 0.001; linear regression between the log

centralities logπi and z′i). The same finding holds for |z′i − zi| and zi.

At this point, one may wonder whether the eigenvector centrality really influences the

strategic opinions z′i for i ∈ S. Our answer is negative. We repeat the same experiment with

the Twitter and Reddit datasets, where we find no effects (P > 0.1; linear regression between

the log centralities logπi and z′i). Due to space limitations, the corresponding figures are

deferred to Section 6.7.
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Figure 6.4: Polarization ratio (P(z′)/P(z)), disagreement ratio (D(z′)/D(z)), and price of
misreporting (C(z′)/C(z)) for the three datasets for varying susceptibility to persuasion
values. We have set all susceptibilities αi to the same value α. The Twitter dataset has the
largest variation in all three ratios compared to the others. S is taken to be the top-50%
nodes in terms of their eigenvector centrality.

Polarization and Disagreement. Figure 6.4 shows how the polarization, disagreement,

and cost change as a function of the susceptibility parameter αi. Except for αi ≈ 0.3, the

polarization ratio, disagreement ratio, and the price of misreporting experience a downward

trend as αi increases. This indicates that as as users prioritize their own opinions more than

their neighbors, they are less susceptible to strategic manipulation.

Effect of the number of deviators (|S|) Next, we study the effect of the number of

deviators, which corresponds to |S|, on the changes in polarization, disagreement, and the

total cost (through the price of misreporting). Figure 6.5 shows how the polarization and

disagreement when S consists of the top-1-10% most central agents with respect to eigenvector
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centrality. We show that even if only 1% of agents are strategic, this can impact consensus

by several orders of magnitude.
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Figure 6.5: Polarization ratio (P(z′)/P(z)), disagreement ratio (D(z′)/D(z)), and price of
misreporting (C(z′)/C(z)) for the three datasets for varying the size of |S|. The size of
|S| corresponds to the top p percent of the actors (|S| = dpne) based on their eigenvector
centrality (in decreasing order), for p ∈ [0.01, 0.1]. The susceptibility parameter is set to
αi = 0.5.

6.3 Price of Misreporting

In Section 6.2, we saw that strategic manipulation can substantially affect network

outcomes via the Polarization Ratio and Disruption Ratio. We now give an upper bound for

the Price of Misreporting (Eq. (6.8)), which is the analogue of the Price of Anarchy in our

setting. The PoM measures the total cost paid by agents under the corrupted equilibrium z′,

versus the total cost under the non-corrupted z. Since the cost captures an agent’s deviation

from her truthful intrinsic opinion as well as her deviation from the expressed opinions of her

neighbors, it is a natural measure of the network’s discord at equilibrium.

Theorem 6.3.1 shows that the PoM is small when the spectral radius of the Laplacian

is small, and when agents are somewhat susceptible to their neigbhors (α 6→ 0). Note that

the spectral radius can be replaced by a degree bound: if dmax is the maximum degree of the

graph, then λn ≤ 2dmax. So the PoM is small if the maximum degree is small.

Theorem 6.3.1. Suppose all agents deviate (S = [n]) and there exists α such that αi = α

for all i. Let α̃ = α/(1− α), and λn be the spectral radius of the Laplacian. Then the price
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of misreporting is bounded as:

PoM ≤ (λn + 4α̃)(λn + α̃)2

α̃5
= O

(
max

{
λn
α̃5
,

1

α̃2

})
.

From Theorem 6.3.1, we can show that the upper bound is minimized when λn = Θ(α̃3)

and has a value of O(1/α̃2). As we noted, Theorem 6.3.1 can be written with dmax in the

place of λn as well.

Next, we give an easy generalization to the case of differing susceptibility.

Corollary 6.3.2 (Price of Misreporting for Heterogeneous Susceptibility). If the αi are

differing, let αmin = mini αi and αmax = maxj αj. Define α̃min = αmin

1−αmax
, α̃max = αmax

1−αmin
. The

Price of Misreporting is bounded as:

PoM ≤ 1− αmin

1− αmax

(λn + 4α̃max)(λn + α̃max)2

α̃min

.

Finally, we discuss how one may generalize Theorem 6.3.1 to the case where some

agents are honest.

Towards fine-grained PoM guarantees. Figure 6.4 shows that the PoM is not monotonic

in |S|. As the number of strategic agents grows, the PoM can fall or grow, depending on the

choice of S, network parameters, and so on. Therefore, we would like to give a version of

Theorem 6.3.1 for any set of strategic agents S ⊂ [n], not just the case of S = [n]. However,

proving such a bound would require analyzing S × S principal submatrices of B,L to obtain

characterizations of the cost at the corrupted equilibrium z′. In particular, we would require

a restricted invertibility estimate to prove the analogue of Eq. (6.14). To our knowledge, the

best such estimates (Marcus et al., 2022) are too lossy when n− |S| is large. We leave this

question to future work.

6.4 Learning from Network Outcomes

To mitigate the effects of strategic behavior, a platform must understand whether

manipulation has occurred, and who the strategic actors are. In this section, we give
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Algorithm 6 Learning from Misreporting Equilibrium with Hypothesis Testing
Input: Estimated graph information L̂ and Â, observed equilibrium z′

Output: “Manipulation” or “No Manipulation”
Observe corrupted equilibrium z′.
Solve for ŝ′ (Eq. (6.11)).
Perform one-sample t test on the entries of ŝ′ with a population mean µ0 under the null
hypothesis.
return If the t-test rejects, return “Manipulation.” Otherwise, return “No Manipulation.”

computationally efficient methods to do so based on knowledge of the network edges and

observing the corrupted equilibrium z′. The latter can be found, for example, by performing

sentiment analysis on the users’ posts.

6.4.1 Detecting Manipulation with a Hypothesis Test

In many real-world networks, the distribution of truthful opinions follows a Gaussian

distribution (Figure 6.6). Given estimates (L̂, Â) for the graph Laplacian and susceptibility

matrix, the platform can observe the corrupted equilibrium z′ and solve for the strategic

opinions s′ via:

ŝ′ := Â−1((I − Â)L̂+ Â)z′. (6.11)

We propose that the platform perform a one-sample t-test with the entries s′, with a

population mean µ0 ∈ R based on e.g. historical data. Under the null hypothesis in which

no manipulation has occurred, s′ = s, so the test should fail to reject the null hypothesis.

However, when agents S ⊂ [n] deviate, then s′i 6= si for i ∈ S, so the test should reject the

null for large enough deviations. The test is simple, and described in Algorithm 6. Figure 6.6

shows the results of the test for varying choices of S. We see that at significance level 0.05,

the test has low Type I error, as it will return “No Manipulation” when S = ∅, and low Type

II error as it will return “Manipulation” when S 6= ∅.

For the Political Blogs dataset, intrinsic opinions belong to {±1}, so the null hypothesis

should be a biased Rademacher distribution. In this case, one should use a χ2-test, as in

Agarwal et al. (2020); Chen and Tsourakakis (2022).
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Figure 6.6: The true opinions for Twitter (left) and Reddit (middle) both follow a normal
distribution. When simulating strategic manipulation with random choices of S (right), the
detection test (Algorithm 6) has no Type I or Type II error at significance level 0.05. The
tester uses L̂ = L, Â = A = 1

2
I, and µ0 equal to the mean of the true intrinsic opinions.

Shaded regions are 95% confidence intervals for p-values of the test across 5 independent
runs.

6.4.2 Learning the Strategic Actors with Robust Regression

The algorithm described in the previous section (Algorithm 6) can be used to detect

whether there exists manipulation in the network. However, the set S is unknown, and

therefore the platform cannot target the deviators to perform interventions to mitigate

strategic behavior.

It is, therefore, essential for the platform to be able to identify the set of deviators

S, in case the platform needs to take regulatory actions. While at first, it may seem that

finding the set of deviators S is a hard task, it turns out that under mild assumptions on

the intrinsic opinion formation process, we can learn the set of deviators S from observing

the strategically corrupted equilibrium z′ via Algorithm 7 in polynomial time, described in

Algorithm 7. Our algorithm is based on robust regression leveraging the Torrent algorithm

developed by Bhatia et al. (2015) and requires access to a node embedding matrix X ∈ Rn×d,

and the size |S| of the set of deviators.

The key idea of Algorithm 7 is that if the size of the strategic set S is sufficiently small,

in general, |S| ≤ Cn for some small constant C, then we can view the misreported intrinsic

opinions s′ as a perturbation of the truthful opinion vector s, and then use a robust regression

algorithm to estimate s. We assume that the embedding matrix X ∈ Rn×d determines

intrinsic beliefs: for example, demography, geographic location, etc. Node-level features can

be learned by a variety of methods, such as spectral embeddings on the graph Laplacian

or graph neural networks. Previous works have used the framework of combining a robust
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Algorithm 7 Learning from Misreporting Equilibrium
Input: Features X ∈ Rn×d, graph information L and A, observed equilibrium z′, set size |S|
Output: Set of strategic agents Ŝ, estimated intrisic beliefs ŝ.
ŝ′ ← A−1((I − A)L+ A)z′

v̂ ← Robust Regression (Torrent) with design matrix X, response vector ŝ′
ŝ← Xv̂
diffs← |ŝ− ŝ′|
Ŝ ← indices of top k largest values in diffs
return ŝ ∈ Rn, Ŝ ⊆ [n]

estimator with model-specific information to learn from “strategic sources” of data, such as in

bandits Kapoor et al. (2019), controls Russo (2023), and network formation games Jalan and

Chakrabarti (2024).

In the sequel, we give the precise technical condition of the features required for robust

regression to work (Bhatia et al., 2015), which is based on conditions on the minimum and

maximum eigenvalues of the correlation matrix determined by the features corresponding

to agents in S. Specifically, for a matrix X ∈ Rn×d with n samples in Rd and S ⊂ [n]

let XS ∈ R|S|×d select rows in S. Note that λmin(·), λmax(·) are the min/max eigenvalues

respectively.

Definition 6.4.1 (SSC and SSS Conditions). Let γ ∈ (0, 1). The features matrix X ∈ Rn×d

satisfies the Subset Strong Convexity Property at level 1− γ and Subset Strong Smoothness

Property at level γ with constants ξ1−γ,Ξγ respectively if:

ξ1−γ ≤ min
S⊂[n]:|S|=(1−γ)n

λmin(XT
SXS),

Ξγ ≥ max
S⊂[n]:|S|=γn

λmax(XT
SXS).

We give our guarantee for Algorithm 7.

Proposition 6.4.2. Let X be as in Algorithm 7, and suppose that Xv = s for some v ∈ Rd,

and that X satisfies the SSC condition at level 1− γ with constant ξ1−γ, and SSS condition

at level γ with constant Ξγ (Definition 6.4.1). Then, there exist absolute constants C,C ′ > 0

such that if |S| ≤ Cn and 4

√
Ξγ√
ξ1−γ

< 1, Algorithm 7 returns ŝ such that:

‖ŝ− s‖2 ≤ ‖X‖2n
−ω(1),
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using T = C ′(log n)2 iterations of Torrent for the Robust Regression step. Moreover,

if for all j ∈ S we have |sj − s′j| � ‖X‖2n
−ω(1), then Ŝ = S.

It is interesting to investigate what an upper bound on the size of S is when nodes

have community memberships, such that recovery is possible, as the SSC and SSS conditions

determine it. Specifically, we show the following for a blockmodel graph (proof deferred in

the Appendix).

Proposition 6.4.3. If G has two communities with n1 and n2 nodes respectively such that

n1 ≥ n2 ≥ 1, and X ∈ {0, 1}n×2 is an embedding vector where each row xi corresponds to a

one-hot vector for the community of node i, then Algorithm 7 can recover S perfectly as long

as |S| < n1

17
.

For instance, when Proposition 6.4.3 is applied to the Polblogs dataset, it shows that

S can be fully recovered as long as |S| ≤ 9. We can obtain a slightly worse bound and extend

the result to a blockmodel graph with K communities (proof in the Appendix).

Proposition 6.4.4. If G has K ≥ 2 communities with sizes n1 ≥ n2 ≥ · · · ≥ nK with
(

16K
16K+1

)
n
K
< nK ≤ n

K
and X ∈ {0, 1}n×K is an embedding vector where xi corresponds to an

one-hot encoding of the community membership, then Algorithm 7 can recover S perfectly as

long as |S| < 1
16K+1

n.

In detail, Proposition 6.4.4 states that as long as the smallest community of the graph

has size Θ(n/K) then the recovery of a set of size |S| = O(n/K) is possible. If |S| � n/K

and S contains all members of the smallest community, then robust regression can fail.

We show that in real-world datasets, Algorithm 7 can identify the set of deviators

with high accuracy (cf. Figure 6.7). Specifically, in the real-world datasets we take S to be

a randomly sampled set of size dpne for p ∈ {0.05, 0.1, 0.15, 0.2} and the embeddings to be

128-dimenaional Node2Vec embeddings for Twitter and Reddit and community membership

embeddings for the Pollblogs dataset. Algorithm 7 achieves low recovery error as well as high

balanced accuracy score.

239



5 10 15 20

10 7

10 5

10 3

10 1

Re
co

ve
ry

 E
rro

r

5 10 15 20

0.7

0.8

0.9

Ba
la

nc
ed

 A
cc

ur
ac

y

Twitter (Node2vec)
Polblogs (Communities)
Reddit (Node2vec)

% Strategic Agents

Figure 6.7: Reconstruction error and balanced accuracy for the robust regression problem
presented in Algorithm 7. The x-axis shows the percentage of strategic agents. The left
subfigure shows the recovery error, measured as 1

n

∑
i∈[n]

∣∣∣ ŝi−sisi

∣∣∣, and the right subfigure

measures the balanced accuracy between the recovered Ŝ and the true S. To construct the
confidence intervals, for each size |S| of the set S, we draw S five times randomly from the
vertex set [n]. For the Twitter and Reddit datasets, we have used 128-dimensional Node2vec
embeddings. For the Polblogs dataset we have used the community membership (which
corresponds to the political orientation) of each node, such that xi = (1, 0) corresponds to
liberal and xi = (0, 1) corresponds to conservative, and (the true) s is such that s = Xv for
v = (1,−1)T . We have also provided results using 128-dimensional spectral embeddings. We
have set the recovery threshold for Torrent to be |S|/n, and the step size to be η = 1/‖X̄‖2

2

where X̄ is the min-max normalized embedding matrix.
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6.5 Discussion and Conclusion

In this paper, we examine how opinions evolve in social networks, where individuals

adjust their publicly stated views based on interactions with others and their inherent beliefs.

In our model, strategically motivated users can distort these dynamics by misrepresenting

their intrinsic opinions, often to advance conflicting objectives or promote rival narratives.

We analyze the Nash Equilibrium of the resulting strategic interactions and empirically

show — using diverse datasets from Twitter, Reddit, and Political Blogs — that such

deceptive behavior intensifies polarization, fuels disagreement, and increases equilibrium

costs. Additionally, we establish worst-case guarantees on the Price of Misreporting, akin

to the Price of Anarchy, and introduce scalable learning algorithms to help platforms (i)

detect opinion manipulation and (ii) identify the users responsible. Our algorithms perform

effectively on real-world data, suggesting how platforms might mitigate the effects of strategic

opinion shaping.

We conclude with some discussion of the implications of our work, and directions for future

work.

Structural Platform Interventions. We give algorithms for platforms to detect in strate-

gic manipulation has occurred, and who is responsible (Section 6.4). Having done so, a

platform might seek to mitigate the effects of strategic behavior. There are multiple plausible

avenues to do so.

First, they may seek to reduce degree disparities in the network by algorithmically

encouraging balanced connections, such as by suggesting users connect with those who have

fewer connections, or reducing the visibility of central nodes (hubs). As we saw, both the

upper bound on the PoM and the ratio ‖s′‖2/‖s‖2 depend on the largest eigenvalue λn of the

Laplacian, which scales with the maximum degree. This motivates interventions to balance

the degree distribution.

Second, platforms can design strategy-proof mechanisms to incentivize the agents to

report their true opinions. For resource allocation games on networks, it is known that the

classical Vickrey–Clarke–Groves (VCG) mechanism is susceptible to adversarial behaviors

such as collusion, motivating the need for different mechanisms (Chorppath et al., 2015). In
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the case of social networks, platforms have unique tools such as fines or banning of accounts

to modify agents’ utility functions.

Future Work First, it is not clear which measure of centrality should be used to identify

the users who are most capable of manipulating others. As can be seen from Theorem 6.2.2,

the influence of agent i ∈ S should depend on the other members of S, as well as the spectral

properties of the localized Laplacian matrices Lj for j ∈ S and susceptibility parameters αk
for k ∈ [n].

Second, providing PoM bounds where S can be any set of agents constitutes another

interesting research direction, especially if platforms can assume that S is a small fraction

of all users. As we noted after Theorem 6.3.1, we believe that this would require restricted

invertibility analysis of the matrices determining Nash equilibria.

Third, future work might consider different models of strategic manipulation. For

example, one could consider a “feedback equilibrium” model (in the sense of dynamic games Li

et al. (2024)), in which agents i ∈ S can report arbitrary z′i(t) at each timestep t, rather

than following Eq. (6.1). This flexbility may give strategic agents more power to influence

outcomes.

6.6 Proofs
6.6.1 Proof of Theorem 6.2.2

Proof of Theorem 6.2.2. Consider agent i ∈ S. To calculate the best-response s′i of i in

response to s′−i, we analyze derivatives of its cost function with respect to s′. Since the
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equilibrium z′ is z′ = Bs′, we have:

ci(z
′) = (1− αi)

∑

j∼i

wij(z
′
i − z′j)2 + αi(z

′
i − si)2

ci(s
′) = (1− αi)

∑

j∼i

wij((ei − ej)TBs′)2 + αi(e
T
i (Bs′ − s))2

= (1− αi)
∑

j∼i

wij(s
′)T (BT (ei − ej)(ei − ej)TB)(s′)

+ αi((s
′)TBT eie

T
i Bs

′ − 2(s′)TBT eie
T
i s+ sT eie

T
i s)

∇s′ci(s
′) = (1− αi)

∑

j∼i

wij2(BT (ei − ej)(ei − ej)TB)(s′) + αi(2B
Teie

T
i Bs

′ − 2BTeie
T
i s),

∇2
s′ci(s

′) = 2(1− αi)BT

[∑

j∼i

wij2(ei − ej)(ei − ej)T
]
B + 2αiB

Teie
T
i B.

Let Li ∈ Rn×n be:

Li :=
∑

j∼i

wij(ei − ej)(ei − ej)T .

Notice that Li is precisely the Laplacian of the graph when all edges not incident to i are

equal to zero. Therefore Li � 0. Since eieTi � 0, the Hessian of ci with respect to s′ is PSD.

In particular, its (i, i) entry is non-negative, so ∂2ci(s
′)

∂(s′i)
2 ≥ 0, and hence the optimal s′i is at

the critical point. This is given as:

0 =
1

2

∂

∂s′i
ci(s

′)

= eTi (1− αi)BT

[∑

j∼i

wij(ei − ej)(ei − ej)T
]
Bs′ + eTi αi(B

Teie
T
i Bs

′ −BTeie
T
i s)

= (1− αi)eTi BTLiBs
′ + eTi αi(B

Teie
T
i Bs

′ −BTeie
T
i s).

The above display gives the solution for s′i in terms of all entries of s′. Assembling the critical

points into a linear system, we obtain precisely that for all i ∈ S, eTi Tis′ = yi. Since s′j = sj

for j 6∈ S, the overall linear system describes the Nash equilibria.

6.6.2 Proof of Corollary 6.2.7

Proof of Corollary 6.2.7. When all agents are deviating, it is straightforward to show that

T̃ = α̃B with minimum eigenvalue α̃2/(λn + α̃) > 0. Thus T̃ is invertible, and therefore

s′ = 1
α̃
B−1 ˜diag(B)s, where ˜diag(B) is a diagonal matrix with entries Bii. Then
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‖s′‖2 ≤
1

α̃
‖B−1‖2‖ ˜diag(B)‖2‖s‖2

=
(

max
i
Bii

)(
max
i

λi + α̃

α̃

)
‖s‖2

≤ α̃

λ1 + α̃

λn + α̃

α
‖s‖2

=
λn + α̃

α̃
‖s‖2.

6.6.3 Proof of Theorem 6.3.1

Proof of Theorem 6.3.1. First, we set α̃ = α/(1− α). By substituting z = Bs we can show

by straightforward algebra that C(z)/(1− α) = sTQs where Q � 0 with

Q = BLB + α̃(I − 2B +B2) (6.12)

Since Q � 0, it has eigendecomposition Q = UΛQU
T . Moreover, U is precisely the matrix

of eigenvectors for the Laplacian. The eigenvalues of Q can be shown to be α̃2/(λi + α̃).

Therefore, C(z) = sTQs ≥ α̃2

λn+α̃
‖s‖2

2.

Next, let diag(B) be the diagonal matrix with entries Bii and ˜diag(B) be as in

Corollary 6.2.7. In the proof of Corollary 6.2.7, we show that s′ = (1/α̃)B−1 ˜diag(B)s and

z′ = (1/α̃) ˜diag(B)s, which similarly implies (after algebraic operations) that C(z′)/(1−α) =

sTQ′s where:

Q′ :=
1

α̃2
˜diag(B)L ˜diag(B) +

1

α̃
B−1

(
˜diag(B)

)2

B−1 − 2
1

α̃
B−1

(
˜diag(B)

)2

+
1

α̃

(
˜diag(B)

)2

Note that Q′ cannot be diagonalized since, in general, ˜diag(B) has a different eigenbasis

than L. However, we note that:

‖ ˜diag(B)‖2 = max
i
Bii ≤ ‖B‖2 = 1, (6.13)

‖B−1‖2 = max
i

λi + α̃

α̃
=
λn + α̃

α̃
. (6.14)
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By the triangle inequality, the Cauchy-Schwarz inequality, and Equations (6.13) and (6.14),

we have that:

‖Q′‖2 ≤
1

α̃2
‖L‖2

(
‖ ˜diag(B)‖2

)2

+
1

α̃

(
‖ ˜diag(B)‖2

)2

‖B−1‖2
2 +

2

α̃
‖B−1‖2 +

1

α̃

(
‖ ˜diag(B)‖2

)2

≤ (λn + 4α̃)(λn + α̃)

α̃3
.

Therefore C(z′)/(1− α) ≤ (λn+4α̃)(λn+α̃)
α̃3 ‖s‖2

2. Hence,

C(z′)

C(z)
≤ (λn + 4α̃)(λn + α̃)2

α̃5
. (6.15)

Finally, we can simplify:

(λn + 4α̃)(λn + α̃)2

α̃5
≤ 64(λn + α̃)3

α̃5
≤ 128(max{λn, α̃})3

α̃5
. (6.16)

6.6.4 Proof of Corollary 6.3.2

Proof of Corollary 6.3.2. Note that C(z′) ≤ (1 − αmin)(z′)TLz′ + αmax‖z′ − s‖2
2 = C(z′),

and C(z) ≥ (1− αmax)zTLz + αmin‖z − s‖2
2 = C(z) where αmin = mini∈[n] αi, and αmax =

maxi∈[n] αi. Then, the same analysis of Theorem 6.3.1 can be applied, since C(z′)/C(z) ≥
C(z′)/C(z).

6.6.5 Proof of Proposition 6.4.2

We are ready to prove Proposition 6.4.2.

Proof of Proposition 6.4.2. Let ŝ′ be as in Algorithm 7, and y = ŝ′. Notice y = s + (s′ −
s) + (ŝ′ − s′). Let w := (s′ − s) be the corruption vector due to strategic negotiations and

r = (ŝ′ − s′) be the residual vector due to least-squares regression. We claim that r = 0,

because A−1 is full rank and ((I − A)L+ A) is full rank, so ŝ′ = A−1((I − A)L+ A)z′ = s′.

Next, we apply the main Theorem of Bhatia et al. (2015) (Theorem 5.8.8). Notice that

‖w‖0 ≤ Cn by assumption. Moreover, X satisfies the SSC and SSS coniditons. Therefore,

after T iterations, Algorithm 7 obtains ŝ such that:

‖v̂ − v‖2 ≤
exp(−cT )√

n
‖s′ − s‖2.

245



Therefore, letting T = C ′(log n)2 for large enough constant C ′ > 0, we see that ‖v̂ − v‖2 ≤
O(n−ω(1)). Hence ‖ŝ−s‖2 = ‖Xv̂−Xv‖2 ≤ ‖X‖2 ·n−ω(1). Now, let u = ŝ−s′. If i ∈ [n]\S,
then |ui| ≤ ‖X‖2 · n−ω(1). On the other hand for j ∈ S, |uj| ≥ |sj − s′j| − ‖X‖2n

−ω(1).

Therefore the top-|S| entries of u recover S.

6.6.6 Proof of Proposition 6.4.3

Let V1 correspond to the vertex set for community 1 and V2 correspond to the vertex

set for community 2. Let Iq denote the q × q identity matrix, and ai = |Vi ∩ S| for i = 1, 2.

Then

XT
SXS =

(
Ia1 0
0 Ia2

)
.

Therefore λmax(XT
SXS) = max{|V1 ∩ S|, |V2 ∩ S|} and λmin(XT

SXS) = min{|V1 ∩
S|, |V1 ∩ S|}.

First, we determine sufficient ranges of γ and the value of Ξγ: Let S be such that

|S| = γn. We have the following options:

• S ⊆ V1. Then λmax(XT
SXS) = γn.

• S ⊆ V2. Then λmax(XT
SXS) = γn.

• V1 ⊆ S. Then λmax(XT
SXS) lies between γn/2 and γn.

• V2 ⊆ S. Then λmax(XT
SXS) lies between γn/2 and γn.

• If S lies partially in V1 and V2, then λmax(XT
SXS) = max{(1 − t)γn, tγn} for some

t ∈ [0, 1]. Again, this is upper bounded by γn.

The above yield Ξγ = γn. To determine ξ1−γ we let S be such that |S| = (1 − γ)n.

We have the following options:

• S ⊆ V1. Then λmin(XT
SXS) = 0.

• S ⊆ V2. Then λmin(XT
SXS) = 0.

• V1 ⊆ S. Then λmin(XT
SXS) = min{n1, (1−γ)n−n1} = n1 ≥ (1−γ)n−n2 since always

n1 ≥ (1− γ)n/2.
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• V2 ⊆ S. Then λmin(XT
SXS) = min{n2, (1 − γ)n − n2} = (1 − γ)n − n2 since n2 ≤

(1− γ)n/2.

• If S lies partially in V1 and V2, then λmin(XT
SXS) = min{(1− t)(1− γ)n, t(1− γ)n} for

some t ∈ [0, 1]. Again, this is lower bounded by (1− γ)n− n2.

Therefore, for either 1− γ ≤ n1/n or 1− γ ≤ n2/n we have that ξ1−γ = (1− γ)n− n2.

The final inequality corresponds to

4

√
Ξγ

ξ1−γ
< 1 ⇐⇒ γ <

1

17
− n2

17n

Combining the above we get two systems of inequalities. The first one corresponds

to 1− n1

n
≤ γ < 1

17
− n2

17n
which holds for n2 < 1/18 which is impossible since n2 ≥ 1. The

second one corresponds to 1− n2

n
≤ γ < 1

17
− n2

17n
which holds for n2 > 16/18, which is always

true.

6.6.7 Proof of Proposition 6.4.4

First, we note that if V1, . . . , VK are the vertex sets and S is a set of size γn the

maximum eigenvalue equals to λmax(XT
SXS) = maxi∈[K] |Vi ∩ S| and is always at most γn.

So Ξγ = γn. If S is a set of size (1 − γ)n, then the minimum eigenvalue λmin(XT
SXS) =

mini∈[K |Vi ∩ S| is maximized when |V1 ∩ S| = · · · = |VK ∩ S| = (1− γ)n/K which holds as

long as (1− γ)n/K ≤ nK , so ξ1−γ = (1− γ)n/K as long as γ ≥ 1− nK/nK. Also the other

condition is

4

√
Ξγ

ξ1−γ
< 1 ⇐⇒ γ <

1

16K + 1

Finally, we must have 1/(16K+1) > 1−KnK/K which yields nK > n/K(16K/(16K+

1)).
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6.7 Additional Figures
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Figure 6.8: Distribution of centralities and degrees for the datasets
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Figure 6.9: Running the experiments of Figure 6.3 for the Reddit dataset.
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Figure 6.10: Running the experiments of Figure 6.3 for the Twitter dataset.
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