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Abstract

The abelian sandpile model is a discrete dynamical system defined on a graph, in which grains
of “sand” are placed on the vertices and move along edges. Despite its simple combinatorial
description, the sandpile model has surprising connections to a variety of areas, including spectral
graph theory, finite group theory, computational complexity, and more. We will survey some of
these connections through the lens of the sandpile group, a finite abelian group associated to
a graph, whose elements can be identified with recurrent states of the sandpile model. After
presenting various equivalent formulations of the sandpile group, we will focus on a particular
description of the sandpile group, as the cokernel of the graph Laplacian matrix. Under this
description, it is (in principle) easy to compute the invariant factor decompositon of the sandpile
group, by computing the Smith Normal Form of the reduced Laplacian matrix. Using this
technique, we study the invariant factors of the sandpile groups for various families of graphs,
especially expanders. We prove lower bounds on the number of trivial invariant factors for
families of graphs, such as the hypercube and grid graphs. For more interesting graph families,
such as two explicit constructions of expanders, we formulate conjectures about their invariant
factors on the base of computer experiments. 1 2
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1 Introduction

The abelian sandpile model, also called the chip-firing game, is a system in which integers (called
grains of sand, or chips) are assigned to the vertices of a graph. Starting from some intial config-
uration, the model evolves locally according to a firing rule, which a vertex is allowed to fire if it
has at least as many chips as its degree. When a vertex fires, it sends one chip along each of its
incident edges. Thus chips move locally along the graph, with vertices accumulating chips through
firings of their neighbors, and then losing chips when they have too many.

In this thesis, we will focus on understanding the sandpile groups of undirected graphs. This
chapter will present basic definitions and properties of sandpiles. In chapter 2, we will develop some
background on spectral and algebraic graph theory. Chapter 3 presents four characterizations of the
sandpile group, from spectral graph theory, algebraic graph theory, combinatorics, and algorithms
respectively. Finally, in chapter 4 we will prove that the Smith Normal Form of the graph Laplacian
matrix completely determines the sandpile group, through its invariant factor decomposition. As it
is both analytically tractable and computable through a simple algorithm, we can employ the Smith
Normal Form to prove remarkable facts about sandpiles, such as the fact that every finite abelian
group is the sandpile group of a planar graph. Finally, we will prove lower bounds on the number
of trivial invariant factors for sandpile groups of certain graphs, such as the Boolean hypercube.
We will conclude by presenting computer experiments on the values of Smith invariant factors for
explicit families of expander graphs, and use these to make conjectures on the asymptotic behavior
of their invariant factors.

1.1 Background

The abelian sandpile model was discovered independently by researchers in several different com-
munities, including statistical physics, probability, and arithmetic geometry [Hol08]. It is just one
out of many kinds of discrete processes that one can define on a graph - others include the rotor-
routing model, bootstrap percolation, diffusion-limited aggregation, and so on [BL16]. Many such
models, including the ones just named, are examples of abelian networks, which are discrete pro-
cesses characterized by the fact that the order of their operations will not affect the final outcome
[BL16]. In the case of the sandpile model, one can show that the order of vertices chosen to fire
will not affect the resulting stable configuration, if one exists (see section 1.2 for details).

Many distinct versions of the sandpile model are known and studied, depending on the context
and questions at hand (see the books [Kli18], [CP18]). Some versions change the firing rules,
such as the dollar game ([CP18], [Big97]). Others study a Markov process in which an initial
chip configuration is randomly chosen, and then additional chips are added to vertices at random
([Lev15], [JLP15]). In computer science, a large body of work concerns the efficient simulation of
sandpile processes, or the impossibility thereof (see references in [RS17]). Remarkably, even though
efficient simulation algorithms are known for certain families of graphs, the general problem of
computing the final configuration of a sandpile on a directed multigraph is NP-complete [FL16].

Given any finite undirected graph G, one can define the sandpile group of G in terms of certain
states of the sandpile model. Like the sandpile model, the sandpile group is studied by researchers
in various communities, due to the fact that it appears in so many distinct contexts. Lorenzini
([Lor08]) identifies at least four unique names for the sandpile group in different research areas:

1. The group of components in arithmetic geometry.
2. The sandpile group in physics.
3. The Picard group in the theory of algebraic curves. A celebrated result in this area gives a

graph-theoretic analogue of the Riemann-Roch theorem [BN07]. For a detailed exposition of this

3



result, see [CP18].
4. The critical group in algebraic graph theory (see [Big97], [Big99], and section 3.4).
Despite being of interest to so many communities, the sandpile group is difficult to compute

in general. Many basic questions remain unanswered. For example, it is unknown whether the
limiting shape of a certain chip configuration on Z2 even exists (see [Hol08], Question 6.2). Worse,
for a version of the finite, square grid in Z2, even the exact shape of the identity element for the
sandpile group is unknown ([Hol08])!

Of the positive results that do exist on sandpile groups, many utilize the Smith Normal Form of
the graph Laplacian ([Lor08], [RMW93], [Bai03], [JNR03]). The Smith Normal Form is an invariant
of integer matrices, which can be used to compute the invariant factors of the sandpile group (see
section 4). A related work uses methods from random matrix theory to study the sandpile groups
of Erdos-Renyi graphs [Woo17]. Using a version of the moments method for random variables, they
are able to prove exact asymptotic probabilities for the Sylow p-subgroups of the sandpile group
on G(n, q) (the Erdos-Renyi random graph), as n→∞.

1.2 Sandpiles

In this section, we introduce the the abelian sandpile model (also referred to as chip-firing game
[Hol08], or the dollar game [CP18]). We discuss the notion of stabilization with/without a sink,
and prove the abelian property, which justifies the name abelian sandpile.

Throughout this section, G = (V,E) will denote a finite, undirected, connected graph. If v ∈ V ,
then dv = deg(v) = |{e ∈ E : v ∈ e}| is the degree of v. Note that if G is a multigraph, then the
degree of v counts every incident edge to v, including multi-edges and self-loops.

Definition 1.2.1. Let G = (V,E) be a graph. A sandpile (or chip configuration, or dollar
configuration) is a function σ : V → Z.

Note: We will usually write σ ∈ ZV , since we only ever deal with finite graphs, and this notation
emphasizes the view that σ is a vector of integers indexed by V .

Definition 1.2.2. Given a graph G and sandpile σ, a vertex v ∈ V is stable if and only if σv < dv
(that is, if v has fewer chips than its degree). If v is not stable, we say it is unstable.

An important variation of the sandpile model involves the notion of a global sink vertex. This
vertex is reachable from every other vertex, always considered stable, and can never be fired. In-
cluding a global sink vertex results in several nice properties - in particular, that every configuration
can be stabilized.

Definition 1.2.3. Given a graph G, a global sink is a fixed vertex z ∈ V such that:
i. For all v ∈ V , there is a path from v to z
ii. The vertex z is always considered stable.

Remark 1.2.4. Note that even if there exists a vertex z ∈ V which is globally reachable, we can
define a sandpile model on the graph in which z is treated as every other vertex and allowed to
fire. Thus the presence of a global sink is a choice of model, in the sense that we can designate a
global sink vertex for our sandpile model if we so choose, but we can just as well choose to let every
vertex fire.

Remark 1.2.5. The presence of two different models of the sandpile - one with a global sink vertex,
and the other without - raise several questions about the relationships between the two choices of
model. In 3.3, we will show that there is a surprising connection between the sandpile models with
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and without a global sink, called the z-recurrent decomposition. Moreover, in 4.3 we will show that
the sandpile group of a graph (something we define in 3.1) is independent of the choice of sink,
provided that the underlying graph is finite, connected, and undirected.

Having defined stability of individual vertices, we can now define stability for sandpiles.

Definition 1.2.6. Stability of Sandpiles: Given a graph G and sandpile σ, we say that σ is stable
if for all v ∈ V , v is stable. If z ∈ V is a global sink, we say σ is stable with respect to z if for
all v 6= z, v is stable.

Given an unstable sandpile, the sandpile can evolve by redistributing grains of sand (also called
chips) from over-burdened vertices to their neighbors. This redistribution occurs through a sequence
of firing moves, or chip-firings.

Definition 1.2.7. Let G = (V,E) be a graph, and σ ∈ ZV . Let v ∈ V . Let A ∈ ZV×V denote the
adjacency matrix of V , and ai,j the entry of A at row i, entry j.

A firing move at v is a map fv : ZV → ZV such that for all w ∈ V ,

fv(σ)w =

{
σw + av,w w 6= v

σv + av,v − dv w = v

Remark 1.2.8. From the definition of a firing move, it is clear that if ∆ = D − A denotes
the discrete graph Laplacian3, and v ∈ V , then a firing move at v corresponds to subtracting
the vth row (equivalently, the vth column) of the Laplacian from the original configuration. This
characterization of chip-firing will be important in 3.1.

Not every firing move is legal. The abelian sandpile only allows a vertex firing if that vertex is
unstable.

Definition 1.2.9. Let G = (V,E) be a graph, σ ∈ ZV , and v ∈ V . We say that a firing move at v
is a legal firing move at v if σv ≥ dv.

The definitions are analogous for the global sink model, except the sink is never allowed to fire.

Definition 1.2.10. Let G = (V,E) be a graph, σ ∈ ZV , and v ∈ V . If z ∈ V is the fixed global
sink vertex, we say that a firing move at v is a legal firing move at v with respect to z if
σv ≥ dv, and v 6= z.

As mentioned, one motivation for the global sink model of the abelian sandpile is that every
configuration can be stabilized. We are are ready to prove this.

Proposition 1.2.11. Let G = (V,E) be a graph, σ ∈ ZV , and z ∈ V be the global sink vertex.
There exists a finite sequence of legal firing moves from σ resulting in a configuration that is stable
with respect to z.

Proof. If σ cannot be stabilized, then every legal sequence of firing moves will be infinite. Thus,
some vertex will be fired an infinite number of times - say v ∈ V .

Since z is globally reachable, there is a path from v to z - say v0, ..., vk, where v0 = v and vk = z.
Every time v fires, it sends a chip to v1. Therefore, after v0 fires at most dv1 − σv1 times, vertex v1

3Here, D ∈ ZV×V denotes the diagonal matrix where Dv,v = deg(v). We will formally define the Laplacian in
section 2.
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can be fired once. Thus after v0 fires at most (dv1−σv1)(dv2−σv2) times, v1 can be fired (dv2−σv2)
times, and thus v2 can be fired once.

Proceeding by induction, it follows that after v0 is fired
k−1∏
i=1

(σvi − dvi) times, that vi−1 can be

fired at least once. Thus the sink vertex z = vk will receive one chip.
Notice that since the sink vertex never fires, that the total number of chips available to fire

decreases by 1. Since v fires an infinite number of times, it follows that an infinite number of chips
are lost to the sink. However, σ begins with a finite number of chips. This is a contradiction. Thus
σ can be stabilized.

Both the sink and non-sink versions of the model have a crucial abelian property, which is a
consequence of the more general swapping principle for firing sequences.

Proposition 1.2.12. Swapping Principle: Suppose that G = (V,E) is a finite, undirected,
connected graph (possibly with a global sink) and that σ ∈ ZV is an unstable chip configuration.
Suppose that σ0, ..., σn and η0, ..., ηm are two configurations obtained through legal firing moves,
such that σ = σ0 = η0. Further, suppose that σn is stable (again, possibly with respect to the
global sink). Let k = min(n,m). We claim that we can re-arrange the firing sequence of the first
k firings of σ0 → σk, so as to obtain ηk.

Proof. Let v1, ..., vn be the sequence in which chips are fired from σ0 → σn, and similarly let
w1, ..., wm be the sequence for η0 → ηm. Suppose that i ≤ k is the least index such that wi 6= vi.
Then σ` = η` for ` < i. Schematically,

σ = σ0
v1−→ σ1

v2−→ σ2
v3−→ · · · vn−→ σn

σ = η0
w1−→ η1

w2−→ η2
w3−→ · · · wm−−→ ηm

Observe that both vi, wi are unstable in the configuration σi−1 = ηi−1. Further, since σn is
stable, we know that wi must fire at least once in vi+1, ..., vn. Let j > i be the least index such
that vj = wi.

Now, consider the swapped sequence of firings

v1, ..., vi−1, vj , vi, vi+1, ..., vj−1, vj+1, ..., vn

Let τ0, τ1, ..., τn be the chip configurations obtained in this manner, where τ0 = σ0, and τq is
obtained by firing the qth vertex in this sequence, in the configuration τq−1. Schematically,

τ0
v1−→ τ1

v2−→ τ2
v3−→ · · · vi−1−−−→ τi−1

vj−→ τi
vi−→ τi+1

vi+1−−−→ τi+2
vi+2−−−→ · · ·

vj−1−−−→ τj
vj+1−−−→ τj+1

vj+2−−−→ · · · vn−1−−−→ τn−1
vn−→ τn

We must show that this is a valid firing sequence, and that τn = σn. It suffices to show that
τj = σj .

First, it is evident that all firings up to vj are valid, since τi−1 = σi−1 and both vi, vj are unstable
in σi−1. Next, consider τi+1. This is the same as σi, except we have fired vj early. Firing vj early
does not prevent any vertex from being unstable, except for vj itself. However, vj 6∈ {vi+1, ..., vj−1}
by construction. Thus, τj = σj , and thus τn = σn.

Thus, we have re-arranged the firing order for σ0 → σn such that it agrees with η0 → ηm up to
the first i firings. Proceeding inductively, we can re-arrange so that the sequences agree up to the
first min(n,m) firings.
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Remark 1.2.13. The modification method in the proof is an analogue of the insertion sort algo-
rithm for lists of integers. At each step we swap the order of two vertices in the firing sequence, so
that the order is more closely aligned with the sequence w1, ..., wm.

Using the swapping principle, we can derive some useful properties, including the abelian prop-
erty.

Corollary 1.2.14. Using the same notation as before,
i. m ≤ n.
ii. If ηm is stable, then for all v ∈ V , v is fired the same number of times in the sequence

η0 → ηm as it is fired in the sequence σ0 → σm.
iii. The stabilization of any chip configuration σ ∈ NV is unique, if it exists.
iv. If the stabilization of σ ∈ NV exists, then it will be reached by any valid sequence of chip

firings, in a unique number of steps. Moreover, each chip will be fired exactly the same number of
times in each such sequence.

Proof. i. We know that we can rearrange firings so that σk = ηk, where k = min(n,m). If m > n,
then this would imply that ηn is stable. However, ηn can fire a chip, which is a contradiction. Thus
m ≤ n.

ii. Swapping the roles of ηm, σn, we find that m = n by (i). Then by the rearrangement
argument, we can rearrange firings so that ηi = σi for all 0 ≤ i ≤ n. So then the histogram of
firings will be equal.

iii. By (ii), if σn, ηm are stable configurations both reached from σ, then the histogram of firings
must be the same for both of them, which implies σn = ηm.

iv. By (ii) and (iii), we know that any sequence of firings which reaches the unique stabilization
of σ will have length exactly n, and a unique histogram of firings. By definition, only these firing
sequences are valid, and we can take any valid rearrangement to reach the stabilization.

As a consequence of part (iii) of the corollary, we can unambiguously define the stabilization of
any configuration.

Definition 1.2.15. Let G = (V,E) be a graph, σ ∈ ZV . If there is no global sink, let S(σ) be
the stabilization of σ, if it exists. If there is some global sink vertex z ∈ V , let Sz(σ) be the
stabilization of σ with respect to z.

Notice that for the sink-vertex model, we have shown that for every chip configuration, there
exists a unique stabilization, and this stabilization is reached by the same number of firings at
each vertex. In the chapter 3, we will show that under a certain equivalence relation, these stable
configurations form a finite abelian group called the sandpile group. Remarkably, the sandpile
group has several equivalent characterizations, some of which can be defined with no reference to
chip-firing whatsoever. But first, we need to develop tools from spectral graph theory and electrical
network theory, which we do in the next chapter.
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2 Spectral/Algebraic Graph Theory and Expanders

Spectral and algebraic graph theory give powerful tools for analyzing graph properties such as
connectedness, chromatic number, cut sparsity, and more. In this chapter we will present some
basic results from spectral (2.1) and algebraic (2.2) graph theory, anticipating and motivating later
sections. Further, we will introduce expanders (2.3), which are special families of graphs that
are simultaneously sparse and well-connected. Because of their remarkable asymptotic properties,
expanders are a topic of intense interest for mathematicians and computer scientists. Therefore,
we will later seek to understand the structure of the sandpile groups of expanders.

2.1 The Graph Laplacian

Throughout this section, let G = (V,E) be an undirected graph, with self-loops and multi-edges
allowed.

Definition 2.1.1. The graph Laplacian of G is an integer matrix ∆ ∈ ZV×V , whose rows and
columns are indexed by the vertices of G. For u, v ∈ V , let e(u, v) denote the number of edges
between u and v. Then entries of ∆ are given by

∆u,v =

{
deg(u)− e(u, u) u = v

−e(u, v) u 6= v

We can equivalently define ∆ to be D − A, where D is the diagonal degrees matrix and A is
the adjacency matrix.

Because G is undirected, ∆ is a real symmetric matrix. Thus by the spectral theorem, all its
eigenvalues are real and non-negative. The spectrum of the ∆ tells us several useful things about
the underlying graph. We present some basic facts below:

Proposition 2.1.2. Let ∆ be the graph Laplacian of G = (V,E). Let 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn be
the eigenvalues of ∆ in increasing order, counting multiplicity.

i. λ1 = 0, and ~1 ∈ Ker(∆), where ~1 ∈ ZV is the all-ones vector.
ii. λ2 > 0 if and only if G is connected.

Proof. i. Observe that for any v ∈ V , (∆~1)v =
∑
w∈V

∆v,w = deg(v) −
∑
w∈V

e(v, w) = 0. Therefore

~1 ∈ Ker(∆), and so the kernel of ∆ has dimension at least one. Thus λ1 = 0.
ii. ⇐=: We show the contrapositive. Suppose that G is disconnected. Then G has at least

2 connected components. Let U ⊂ V be a connected component. Let χU ∈ ZV be the indicator
vector for U , so for v ∈ V ,

χU (v) =

{
1 v ∈ U
−1 v 6∈ U

We claim ∆χU = 0. Fix v ∈ V . Then

(∆χU )v =
∑
w∈V

∆v,wχU (w) (1)

=
∑
w∈U

∆v,w (2)
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If v ∈ U , then
∑
w∈U

∆v,w = deg(v) −
∑
w∈U

e(v, w), since all edges incident to v are contained in

U . If instead v 6∈ U , then ∆(v, w) = e(v, w) = 0 for all w ∈ U , since U is a connected component.
Thus in either case, (∆χU )v = 0. Since U is a proper subset of V , χU is not in the span of ~1. Thus
the kernel of ∆ has dimension at least 2, and so λ2 = 0.

=⇒: Suppose λ2 > 0. Then for every nonempty proper subset U ⊂ V , χU 6∈ Ker(∆). Therefore
by the above argument, no proper subset U ⊂ V can be a connected component in G. Thus the
only connected component of G contains all of the vertices, and thus G is connected.

In fact, the second eigenvalue of the Laplacian captures a much more precise notion of graph
connectivity, called the edge expansion. This relationship is given by Cheeger’s inequality, which
we develop here.

First, we define edge expansion, which measures how robustly a graph is connected. It does so
by finding the sparsest deletion of edges which disconnects the graph.

Definition 2.1.3. Let S ⊂ V . The edge boundary of S, denoted ∂S, is the set of edges whose
endpoints contain one vertex in S and one vertex in V \ S.

Informally, the size of the edge boundary ∂S captures how connected S is to the rest of a graph.
If ∂S is small, then paths between vertices in S and V \ S must pass through a bottleneck region,
whose removal would disconnect S from the rest of the graph. If ∂S is large, then there are many
paths out of S, and it will remain connected even if some of these boundary edges are lost. We can
next define the edge expansion of a graph.

Definition 2.1.4. The edge expansion of G, also called the Cheeger constant and isoperi-
metric number, is the minimum ratio of |∂S| to |S| for S ⊆ V .

h(G) = min
S⊂V :|S|≤ |V |

2

|∂S|
|S|

Note that for any S ⊆ V , |∂S| = |∂(V \ S)|. Hence we could equivalently define the edge
expansion as

h(G) = min
S⊆V

|∂S|
min{|S| , |V \ S|}

Evidently, h(G) > 0 if and only if G is connected. The best and worst cases of edge expansion
are the complete and path graphs, respectively. If n is an even integer, then the path graph on n
vertices has Cheeger constant h(Pn) = 2

n , while the complete graph on n vertices, Kn, has Cheeger
constant h(Kn) = 1 + n

2 .
Having high edge expansion is an important measure of robustness, which is useful for many

applications. Finding a subset S ⊂ V which achieves |∂S||S| = h(G) is called the Sparsest Cut problem,
and it is a well-studied problem in its own right. In fact, the Sparsest Cut problem is known to be
NP-hard, with the best approximation algorithm giving an O(

√
log(n)) approximation for a graph

on n vertices [ARV09].
Despite the difficulty of finding even an approximate solution to the Sparsest Cut problem,

computing an approximation of the Cheeger constant is as easy as computing the second eigenvalue
of the Laplacian matrix. This is due to Cheeger’s inequality, which gives both lower and upper
bounds on the Cheeger constant in terms of the second eigenvalue of the Laplacian.

To state Cheeger’s inequality, we first need to define the normalized Laplacian matrix.
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Definition 2.1.5. Let G be an unweighted graph in which every vertex has nonzero degree. 4 The
normalized Laplacian of an unweighted graph G,with Laplacian ∆ and degree matrix D is given
by

L = D−1/2∆D−1/2

Notice that if G is d-regular, then the normalized Laplacian is just 1
d∆. The normalized Lapla-

cian is useful when G does not have constant degrees. We can now state and prove the “easy
direction” of Cheeger’s inequality.

Proposition 2.1.6. Let L denote the normalized Laplacian of G, and let its eigenvalues be ν1 ≤
ν2 ≤ ... ≤ νn, counting multiplicities. Then

h(G) ≥ ν2

2

Proof. If G is disconnected, by 2.1.2 we know λ2 = h(G) = 0.
Suppose G is connected. Then if 〈~1〉 denotes the linear span of ~1 ∈ RV , by 2.1.2 it follows that

Ker(∆) = 〈~1〉. Then by the Courant-Fischer theorem, the minimum Rayleigh quotient of ∆ over
vectors Ker(∆)⊥ gives its second eigenvalue. That is,

λ2 = min
x∈〈~1〉⊥

xT∆x

xTx

We can exploit this characterization to lower-bound h(G). Let S ⊂ V . Let χS ∈ ZV be the

indicator vector for S, and s = |S|
|V | . Observe that (χS−s~1)x ∈ 〈~1〉⊥, since (χS−s~1)T~1 = |S|−s |V | =

0. Thus, let x = (χS − s~1).
Next, notice

xT∆x =
∑

(u,v)∈E

(x(u)− x(v))2 (3)

=
∑

(u,v)∈E

(χS(u)− χS(v))2 (4)

= |∂S| (5)

Further, xTx = (1− 2s) |S|+ s2 |V | = (1− s) |S|. Combining results, we obtain

λ2 ≤ min
S⊂V

|∂S|
(1− s) |S|

≤ min
S⊂V :|S|≤|V |/2

2 |∂S|
|S|

= 2h(G)

Finally, we relate λ2 to ν2. Notice that D1/2~1 ∈ Ker(L). Since we assumed G is connected,

4This assumption is necessary for D−1/2 to be defined.
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Ker(L) is generated by D1/2~1. Thus by the Courant-Fischer Theorem,

ν2 = min
y:y∈〈D1/2~1〉⊥

yTLy

yT y
(6)

= min
y:y∈〈D1/2~1〉⊥

(D−1/2y)T∆(D−1/2y)

yT y
(7)

= min
y:y∈〈D1/2~1〉⊥

yT y

zT z

zT∆z

zT z
Where z denotes (D−1/2y) (8)

≤ min
y:y∈〈D1/2~1〉⊥

zT∆z

zT z
since D−1 ≤ I entry-wise (9)

= min
z:D1/2z∈〈D1/2~1〉⊥

zT∆z

zT z
(10)

= λ2 (11)

Thus we conclude that ν2
2 ≤ h(G).

The other direction of Cheeger’s inequality gives an upper bound on h(G), as h(G) ≤
√

2ν2

(see, for example, [CC96], Theorem 3.1). Putting the two together, we obtain:

Theorem 2.1.7. Let G be an undirected graph and ν2 be the secondl-largest eigenvalue of its
normalized Laplacian, counting multiplicies. Then

ν2

2
≤ h(G) ≤

√
2ν2

We conclude this section with the celebrated Matrix-Tree Theorem, which relates the number
of spanning subtrees of a graph with the spectrum of its Laplacian matrix.

Definition 2.1.8. The tree number of a graph G on n labeled vertices, denoted κ(G), is the
number of distinct labeled spanning trees of G. 5

Theorem 2.1.9. ([CK78], Theorem 1): Let G be an undirected graph on n labeled vertices. Let
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn denote the eigenvalues of the graph Laplacian, counting multiplicities. Then

κ(G) =
1

n
λ2λ3 · · ·λn

2.2 Cuts and Flows

Throughout this section, let G = (V,E) denote a finite, connected, undirected graph. We assume
that G has no self-loops, although multi-edges are still allowed.6. Further, assign an arbitrary
orientation to the edges of G, such that each edge e ∈ E has a head (denoted h(e)) and a tail
(denoted t(e)).

5The distinction between spanning trees on labeled and unlabeled vertices is important. On labeled vertices, every
unique subset of edges which forms a spanning tree will be counted separately. However, on unlabeled vertices these
spanning trees will only be counted up to isomorphism (i.e. up to re-labeling of the vertices). For example, the
triangle graph (the cycle graph on 3 vertices) has 3 labeled spanning trees but only one unlabeled spanning tree.

6The presence of self-loops would make the incidence matrix ill-defined, since a self-loop at v would mean
h({v, v}) = t({v, v}) = v

11



Definition 2.2.1. The incidence matrix D ∈ RV×E on G is defined, for v ∈ V, e ∈ E, as

Dv,e =


1 v = h(e)

−1 v = t(e)

0 Otherwise

Having assigned an orientation to edges of G, we can identify vectors in RE with cuts and flows
of G.

Definition 2.2.2. Let G be an oriented, connected graph and D ∈ RV×E its incidence matrix.
The cut space of G is

B = Ker(D)⊥

The flow space of G is
Z = Ker(D)

Thus
RE = Ker(D)⊥ ⊕Ker(D) = Cut Space⊕ Flow Space

As one would expect, the vectors in the cut space can be identified with cuts in the graph, and
the same is true of flow space.

Definition 2.2.3. Given a nonempty, proper vertex subset U ⊂ V , we can define the character-
istic vector of U bU ∈ RE by

bU (e) =


1 U ∩ e = {h(e)}
−1 U ∩ e = {t(e)}
0 otherwise

Observe that if bU (e) 6= 0, then exactly one vertex of e is contained in U . Thus, e is an edge
from U to V \ U . Thus the edges at which bU is nonzero give a cut of the graph. Moreover, bU is
indeed an element of the cut space.

Proposition 2.2.4. For any nonempty, proper U ⊂ V , bU ∈ Ker(D)⊥.

Proof. Notice that bU =
∑
v∈U

b{v} =
∑
v∈U

DT δv. Let z ∈ Ker(D). Then

〈z, bU 〉 =
∑
v∈U
〈z,DT δv〉 (12)

=
∑
v∈U

zTDT δv (13)

=
∑
v∈U

(Dz)T δv (14)

= 0 (15)

Next, we define the analogous notion for the flow space.

12



Definition 2.2.5. Let Q = (v1, e1, v2, e2, ..., vr−1, er1 , vr) be a cycle. Then the characteristic
vector of Q zQ ∈ RE is given by

zQ(e) =


1 t(e), e, h(e)in Q

−1 h(e), e, th(e)in Q

0 otherwise

Proposition 2.2.6. For any cycle Q, zQ ∈ Ker(D).

Proof. It is enough to show that for v ∈ V , 〈zQ, b{v}〉 = 0, since b{v} = DT δv, so 0 = 〈zQ, b{v}〉 =

zTQD
T δv = (DzQ)T δv.

Consider v ∈ V . If v never occurs in the cycle, then clearly 〈zQ, b{v}〉 = 0. If v does occur in
the cycle, there are four cases.

zTQb{v} = (zQ(e1)b{v}(e1)) + (zQ(e2)b{v}(e2)) =


(1 · 1) + (−1 · 1) v = h(e1) = t(e2)

(−1 · −1) + (1 · −1) v = t(e1) = h(e2)

(−1 · 1) + (−1 · −1) v = h(e1) = h(e2)

(1 · −1) + (1 · 1) v = t(e1) = t(e2)

In all four cases, the inner product is 0. Thus 〈zQ, b{v}〉 = 0, so we conclude zQ ∈ Ker(D).

Finally, we conclude with a simple identity relating the incidence matrix to the graph Laplacian.

Proposition 2.2.7. The graph Laplacian ∆ is given by

∆ = DDT

Proof. Let v, w ∈ V be distinct. Then

(DDT )v,w =
∑
e∈E

Dv,eD
T
e,w (16)

=
∑
e∈E

Dv,eDw,e (17)

= − |{e ∈ E : e = {v, w}}| (18)

= ∆v,w (19)

Next,

(DDT )v,v =
∑
e∈E

Dv,eD
T
e,v (20)

=
∑
e∈E

D2
v,e (21)

= dv = ∆v,v (22)

We conclude that all entries of ∆ and DDT are equal.
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Remark 2.2.8. One can define a Laplacian on a weighted graph by replacing edge counts with
weights, so that ∆v,w is the sum of the weights on the edges between v, w ∈ V , and ∆v,v is the sum
of the weights on edges incident to v, minus the sum of weights on self-loops at v. It turns out that
if W ∈ RE×E is the diagonal weight matrix, then one can generalize this result to

∆ = DWDT

Our version corresponds to the case where every edge has weight 1.

2.3 Expander Graphs

Expanders are, informally, graphs which are simultaneously sparse and robustly connected. They
are a major topic of interest to computer scientists and mathematicians, with applications to error-
correcting codes, metric geometry, probabilistically checkable proofs, and so on [HLW06].

A natural way of viewing expanders is as optimal asymptotic solutions to the isoperimetry
problem. Recall from 2.1 that any graph has an associated Cheeger constant which is a measure of
how robustly connected it is. Graphs with high Cheeger constant will remain connected even when
subject to small edge perturbations or deletions.

Clearly, a complete graph is the most robust graph in this sense. However, it is also important
to consider the overhead of storing complete graphs, which have O(n2) edges on n vertices. This
becomes cumbersome for applications involving large n, and we would thus like to know if we can
retain the high Cheeger constant of complete graphs, but for a much sparser graph. A priori, it is
not obvious that we can. For example, the path graph Pn is very sparse, having only O(n) edges,
but it also has very low edge expansion.

Miraculously, there are graphs which have high Cheeger constant but are still quite sparse,
having only O(n) edges. These are called expander graphs, or expander families.

Throughout this section, G = (V,E) will denote a finite, undirected, connected graph.

Definition 2.3.1. Let d ∈ N and ε > 0. A family of graphs (Gi)i∈N is a (d, ε)-expander family
if:

i. For all i, Gi is d-regular (that is, each vertex has exactly d incident edges).
ii. For all i, h(Gi) ≥ ε.
iii. The sequence (|V (Gi)|)i∈N is non-decreasing and goes to infinity.

Since an expander family is d-regular for a constant d, every member graph Gi has O(n) edges
and expansion bounded away from zero. Notice that these are the asymptotically sparsest connected
graphs, since a connected graph on n vertices has at least n− 1 edges.

A number of expander family constructions, both deterministic and probabilitistic, are known.
We discuss three such families.

Definition 2.3.2. The Margulis, Gabber, and Galil (MGG) graphs are a family of expander
graphs (Gk)k∈N+ . For each k ∈ N+, Vk = (Z/kZ)× (Z/kZ). For each (x, y) ∈ Vk, its neighbors are
(x+y, y), (x−y, y), (x, y+x), (x, y−x), (x+y+ 1, y), (x−y+ 1, y), (x, x+y+ 1), and (x, y−x+ 1)
(all additions and subtractions are modulo k).

The family (Gk)k∈N+ is an 8-regular expander family ([HLW06], 2.2(1)).

Definition 2.3.3. Let P ⊂ N be all positive prime integers. The chordal cycle graphs are a
family of expander graphs (Gp)p∈P . For each prime p, Vp = (Z/pZ). For each x ∈ Vp, its neighbors
are (x+ 1), (x− 1), and x−1 (all operations are modulo p, and we define 0−1 to be 0).

The family (Gp)p∈P is a 3-regular expander family ([HLW06], 2.2(2)).
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The proofs that the MGG graphs and chordal cycle graphs are expander families rely on highly
technical results in harmonic analysis and number theory, respectively [HLW06]. However, for
random graphs the analysis is much simpler, requiring only elementary ideas from probability.
Below, we define a family of d-regular bipartite expanders and prove their expansion is bounded
away from zero with constant probability.

Definition 2.3.4. Let d ∈ N+. Let Sn be the set of permutations of [n], and let π1, ..., πd ∈ Sn be
chosen independently and uniformly at random. Let G = (V,E) be defined as follows.

V = {`1, ..., `n, r1, ..., rn} (23)

Ek = {(`1, rπm(1)), (`2, rπk(2)), ..., (`n, rπk(n))} (24)

E =

d⊔
k=1

Ek (25)

Note that E is the disjoint union of of E1, ..., Ed, so there are possibly multiple edges between
a pair of vertices `i, rj .

We can show that with nonzero probability, a graph sampled in such a way is an expander for
large enough n, d.

Proposition 2.3.5. Let d > 2, and n > 8d. Then if G is a d-regular random graph on 2n vertices
described as above, then there exist constants p, c > 0 independent of n such that P[h(G) ≥ c] > p.
Thus G is an expander with positive probability.

Proof. By definition G is d-regular. We want to show that for some c > 0 that P[∀S ⊆ V : |S| ≤
n⇒ ( |∂S||S| ≥ c)] > 0. Notice that

P[∀S ⊂ V : |S| ≤ n⇒ |∂S|
|S|
≥ c] = 1− P[∃S ⊂ V : |S| ≤ n ∧ |∂S|

|S|
< c] (26)

≥ 1−
∑

S⊂V :|S|≤n

P[
|∂S|
|S|

< c] Union Bound (27)

Thus, we want to show that
∑

S⊂V :|S|≤n
P[ |∂S||S| < c] < 1.

There are two cases regarding S.
Case 1 : S ⊆ V1 or S ⊆ V2. Then every edge incident to S leaves S to go to the other side of

the partition, and so |E(S, V \ S)| = d |S|. Thus |E(S,V \S)|
|S| = d.

Case 2 : S 6⊆ V1 and S 6⊆ V2. Without loss of generality let |S ∩ V1| ≥ |S ∩ V2| (the other case
is symmetric).

For simplicity of notation let S1 = S ∩ V1, S2 = S ∩ V2. Then by assumption |S2| ≤ n
2 . Thus,

let B2 be any (n/2) elements of V2 \ S2. Notice that every edge in E(S1, B2) is in ∂S. Thus
|E(S1,B2)|

2|S1| ≤ |∂S|
2|S1| ≤

|∂S|
|S| .

Thus |∂S||S| < c implies that |E(S1,B2)|
2|S1| < c, and thus P[ |∂S||S| < c] ≤ P[ |E(S1,B2)|

|S1| < 2c].
We use a Chernoff bound.
For i ∈ [d], let Ei(S1, B2) denote the edges between S1, B2 that are from the ith permutation.

Let X1, ..., Xd be Bernoulli random variables, where for all i ∈ [d],
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Xi =

{
1 |Ei(S1,B2)|

|S1| ≥ 1
2

0 otherwise

Notice that Ei(S1, B2)∪Ei(S1, V2\B2) = Ei(S1, V2). Further, by symmetry, since P[ |Ei(S1,B2)|
|S1| ≥

1
2 ] = P[ |Ei(S1,V2\B2)|

|S1| ≥ 1
2 ]. Thus since at least one of the ratios must be at least 1/2, it follows that

1 = P[(
|Ei(S1, B2)|
|S1|

≥ 1

2
) ∪ (
|Ei(S1, V2 \B2)|

|S1|
≥ 1

2
)](28)

= P[
|Ei(S1, B2)|
|S1|

≥ 1

2
] + P[

|Ei(S1, V2 \B2)|
|S1|

≥ 1

2
]− P[

|Ei(S1, V2 \B2)|
|S1|

=
|Ei(S1, V2 \B2)|

|S1|
=

1

2
](29)

= 2P[
|Ei(S1, B2)|
|S1|

≥ 1

2
]− P[

|Ei(S1, V2 \B2)|
|S1|

=
|Ei(S1, V2 \B2)|

|S1|
=

1

2
](30)

Thus since P[ |Ei(S1,V2\B2)|
|S1| = |Ei(S1,V2\B2)|

|S1| = 1
2 ] ≤ P[ |Ei(S1,B2)|

|S1| ≥ 1
2 ], it follows that 1/3 ≤

P[ |Ei(S1,B2)|
|S1| ≥ 1

2 ] ≤ 2/3.
We are ready to apply the Chernoff bound. X1, ..., Xd are i.i.d. Bernoulli variables, and for

all i we have 1/3 ≤ P[Xi = 1] ≤ 2/3. Let X =
d∑
i=1

Xi and µ = E[X] = dP[X1 = 1]. Notice

X = |E(S1,B2)|
|S1| , and d/3 ≤ µ ≤ 2d/3.

Let δ ∈ (0, 1) be a constant (to be chosen later). Then setting 2c = (1 − δ)µ, by the Chernoff
bound we have that

P[
|E(S1, B2)|
|S1|

< 2c] = P[X < (1− δ)µ] ≤ exp(−δ
2µ

2
)

Thus, ∑
S⊂V :|S|≤n

P[
|∂S|
|S|

< c] ≤
∑

S⊂V :|S|≤n

P[
|E(S1, B2)|
|S1|

< 2c] (31)

≤
∑

S⊂V :|S|≤n

exp(
−δ2µ

2
) (32)

≤ 22nexp(
−δ2µ

2
) (33)

≤ exp(2n− δ2µ

2
) (34)

Thus, to obtain exp(2n− δ2µ
2 ) ≤ e−1, we set δ ≥

√
4n+2
µ , and hence c ≤ µ

2−
√
µ(4n+ 2) ≤ µ

2 ≤
d
3

suffices. Since in case 1 we found that c = d is achieved with certainty, we conclude that

P[∀S ⊂ V : |S| ≤ n⇒ |∂S|
|S|
≥ d

3
] (35)

≥ 1−
∑

S⊂V :|S|≤n

P[
|∂S|
|S|

<
d

3
] (36)

≥ 1− 1

e
(37)
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Thus setting c = d
3 and p = 1− 1

e , we obtain constants independent of n.

Notice that at the cost of a weaker lower bound c, we can increase the probability that the
Cheeger constant is achieved. Thus for any ε > 0, there exists a cε > 0 such that P[h(G) ≥ cε] ≥ 1−ε.
In particular, we have shown that for every admissible choice of (n, d) there exists a d-regular
bipartite graph on 2n vertices with expansion at least cε. This gives an expander family.
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3 The Sandpile Group

In this chapter we turn our attention back to sandpiles, and present four equivalent characterizations
of the sandpile group.

The sandpile group of a graph is a finite abelian group that captures several remarkable prop-
erties, one of which is the collection of recurrent chip configurations on the graph under the global
sink model of the abelian sandpile (3.2). In addition to this characterization in terms of sandpiles,
it is also isomorphic to the cokernel of the Laplacian matrix (3.1), and to a certain quotient lattice
defined in terms of integral cuts and flows (3.4).

As mentioned in 1.1, the sandpile group goes by many names in the literature, as its ubiquity
makes it interesting to researchers in subfields of mathematics, computer science, statistical physics,
etc. In this chapter we will explore just a few of these connections, motivating the focus of chapter
4.

3.1 The cokernel of the Laplacian Matrix

Perhaps the most straightforward definition of the sandpile group is in terms of the cokernel of the
Laplacian matrix. Throughout this section, let G = (V,E) be an undirected, connected graph and
∆ its Laplacian.

Any linear map is a special case of a group homomorphism, where the groups in question are
just the additive groups of the domain and codomain respectively. Just as the kernel of a group
homomorphism is a subgroup of its domain, the cokernel is a subgroup of its codomain.

Definition 3.1.1. Let G,H be groups and φ : G→ H be a group homomorphism. The cokernel
of φ is the quotient group H/φ(G).

coker(φ) = H/φ(G)

We are interested in the graph Laplacian matrix ∆, which is a group homomorphism on the
additive group of ZV . First, note that the image of ZV under ∆ is orthogonal to the all-ones vector.

Proposition 3.1.2. Let ZV0 = {x ∈ ZV : ~1T z = 0}. Then ∆(ZV ) ⊆ ZV0 .

Proof. We must show that for all x ∈ ZV , (∆x) is in the orthogonal complement of the all-ones
vector. Let z ∈ ZV . Observe:

~1T (∆x) = (∆x)T~1 = xT∆T~1 = xT∆~1 = xT~0 = 0

Therefore, if we are interested in integer vectors, we can just as well define ∆ to be a map from
ZV to ZV0 . Nothing is lost in this definition, since the image ∆(ZV ) is contained in ZV0 .

The sandpile group is then just the cokernel of the Laplacian matrix.

Definition 3.1.3. Let ∆ denote the graph Laplacian of a connected, undirected graph G. Let
ZV0 = {x ∈ ZV : ~1T z = 0}. Then the sandpile group of G is given by

S(G) = ZV0 /∆(ZV )

In other words, if we view ∆ : ZV → ZV0 as a group homomorphism, then

S(G) = coker(∆)
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Why is this group interesting? One interpretation of the sandpile group is as the set of all
chip configurations on a graph with fixed sink, modulo equivalence under chip-firing. To precisely
explain this, we first show how chip-firings are just addition and subtraction with columns of the
Laplacian.

Proposition 3.1.4. Let σ ∈ ZV be a chip configuration, and η ∈ ZV be the configuration obtain
by firing some v ∈ V from σ. Then if δv ∈ ZV is the indicator vector at v,

η = σ −∆δv

Proof. For w ∈ V , let av,w ∈ N denote the number of edges between v and w. Then if dv denotes
the degree of v, ηv = σv +av,v−dv = (σ−∆δv)v, and for w 6= v, ηw = σw +av,w = (σ−∆δv)w.

Corollary 3.1.5. Let σ ∈ ZV be a chip configuration, and η ∈ ZV be a configuration obtained by
some sequence of chip firings. Suppose u ∈ NV is the vector such that uv counts the number of
times that v was fired. Then

σ = η −∆u

Proof. Notice u =
∑
v∈V

uvδv. Induction on |u| gives the result.

It follows that σ, η belong to the same coset of ∆(ZV ) exactly when one is reachable from the
other via chip-firings. Thus, cosets can be considered “firing equivalence classes” in the sense that
two elements in the same coset are related by a sequence of firings.7

Further, we can identify ZV0 as the set of all “interesting” chip configurations when there is a
global sink. Suppose that G has a fixed global sink vertex z ∈ V . For the purposes of understanding
chip-firing dynamics, the number of chips at z is irrelevant, as z can never fire and is always
considered stable. Therefore, if σ, η ∈ ZV are chip configurations which are equal on every non-
sink vertex, then they can both be identified with the unique ζ ∈ ZV0 such that ζz = −

∑
v∈V \{v}

ζv.

Conversely, any β ∈ ZV0 is such that βz = −
∑

v∈V \{v}
βv.

Therefore, when interested in all sandpiles in ZV , the presence of a global sink means it suffices
to consider sandpiles in ZV0 . Moreover, cosets of ∆(ZV ) in ZV0 can be viewed as collections of
sandiples up to firing-equivalence. Thus the sandpile group is just the collection of all equivalence
classes of chip configurations.

3.2 Combinatorial interpretation

In this section we will develop a purely combinatorial perspective on the sandpile group, by viewing
it as a collection of chip configurations with a suitable binary operation. This justifies the name of
sandpile group, since under this perspective the sandpile group is indeed a collection of sandpiles.

Throughout this section, let G = (V,E) be an undirected, connected graph with global sink
vertex z ∈ V . Recall that the requirement of a sink vertex ensures that every chip configuration on
G has a unique stabilization (see 1.2.15). For a chip configuration σ, we will denote its stabilization
with respect to z by Sz(σ).

First, we define recurrent configurations.

7And of course, the cosets of ∆(ZV ) give a partition of ZV
0 , so membership in the same coset is a bona fide

equivalence relation. However, our relation of “firing equivalence” is not an equivalence relation, since it is not
symmetric; consider the case where σ is reachable from η via a sequence of firings, but σ is stable and so cannot fire
at all.
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Definition 3.2.1. Let σ, ζ be chip configurations. We say that σ is reachable from ζ if there
exists some configuration α ≥ 0 (component-wise) such that Sz(ζ + α) = σ

Definition 3.2.2. A chip configuration σ ∈ ZV is accessible if it is reachable from every chip
configuration ζ ∈ ZV .

Note that any configuration which has a negative number of chips somewhere cannot be acces-
sible, since the all-zero configuration is stable and can never reach a negative configuration via chip
additions and firings.

We can now define recurrent configurations.

Definition 3.2.3. A chip configuration σ ∈ ZV is recurrent if it is stable and accessible.

Our goal in this section is to show that the recurrent configurations are bijective with the
elements of the sandpile group, which we defined as the cokernel of the graph Laplacian. In fact,
under a suitable binary operation, the recurrent configurations form a group which is isomorphic
with the sandpile group.

We begin by developing a few key lemmas concerning recurrent configuratinos.

Lemma 3.2.4. Let σ ∈ ZV be a chip configuration such that σv ≥ 0 for all v 6= z. Then
Sz(σ + η) = Sz(σ + Sz(η)).

Proof. Let σ′ = σ + η. Since σ is nonnegative on non-sink vertices, every vertex unstable in η is
also unstable in σ′. Thus, starting from σ′, it is legal to apply the (possibly empty) sequence of
firings which stabilizes η. This yields σ + Sz(η). Stabilizing σ + Sz(η), via another sequence of
firings, gives Sz(σ + Sz(η)).

Composing these two firing sequences, we obtain a legal firing sequence from σ′ which results
in a stable configuration. By 1.2.14, σ′ has a unique stabilization. Thus Sz(σ

′) = Sz(σ + η) =
Sz(σ + Sz(η)).

Corollary 3.2.5. If for some configurations σ, η (where η is non-negative on non-sink vertices) we
have Sz(σ + η) = σ, then for all k ∈ Z+, Sz(σ + kη) = σ.

Proof. Since η is non-negative on non-sink vertices, observe by 3.2.4 that

Sz(σ + kη) = Sz(Sz(σ + η) + (k − 1)η) (38)

= Sz(σ + (k − 1)η) (39)

It follows by induction on k that Sz(σ + kη) = σ.

We begin by defining a useful configuration ε.

Lemma 3.2.6. Let β be the configuration obtained by “firing the sink,” so β = −∆δz.
There exists k > 0 such that for ε = (kβ)− Sz(kβ),
i. ε can be selectively fired to obtain a configuration α ∈ ZV , such that α ≥ 1 component-wise.

In other words, α has at least one chip at every vertex. then for some v 6= z
ii. For every recurrent configuration σ, Sz(σ + ε) = Sz(σ).

Proof. i. Since G is connected, the sink vertex z ∈ V has at least one neighbor v ∈ V . Thus,
βv > 0. Then for large enough m, mβv > deg(v), so mβ is unstable. Thus if εm = (mβ)−Sz(mβ),
then (εm)(v) > 0.
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Since G is connected, v has a path to every other vertex. Thus for large enough ` ∈ N+,
the configuration (`δv) can be selectively fired to obtain some α′ ≥ 1. Then since (``m) ≥ (`δv)
component-wise, we can perform the same sequence of selective firings from (``m), to obtain α =
(``m − `δv) + α′. Since (``m − `δv) ≥ 0, it follows that α ≥ α′ ≥ 1, so setting ε = `εm suffices.

ii. By 3.2.5, it suffices to show that Sz(σ + εm) = σ. Since σ is accessible, there exists some
configuration η ≥ 0 such that Sz(β+ η) = σ. Then consider γ = β+ η+ εm = β+ η+ kβ−Sz(kβ).

Observer that we can selectively fire γ to stabilize kβ, obtaining β+η+Sz(kβ)−Sz(kβ) = β+η.
Stabilizing this configuration gives Sz(β + η) = σ. Since stabilizations are unique, it follows that
Sz(γ) = σ.

Since kβ−Sz(kβ) is non-negative, we can instead selectively fire γ to stabilize β+ η, obtaining
σ + εm. Stabilizing this configuration should give Sz(γ) = σ. Thus σ = Sz(σ + εm).

These two special properties of ε allow us to prove that every coset of ∆(ZV ) contains exactly
one recurrent chip configuration.

First, we show the existence of a recurrent configuration in each coset.

Proposition 3.2.7. ([Hol08] Lemma 2.13): Each coset in ZV0 /∆(ZV ) contains at least one recurrent
configuration.

Proof. Let σ ∈ ZV0 be an arbitrary configuration. Then by the lifting lemma, there exists ` > 0
such that (σ+`β) can be selectively fired to obtain a configuration ζ, where ζ ≥ max({dv : v ∈ V }).

We claim that Sz(ζ) is recurrent. It is stable by definition. For accessibility, let η ∈ ZV be
arbitrary. Observe that Sz(η) < ζ component-wise, since each vertex in Sz(η) has fewer chips than
its degree. Thus Sz(ζ) = Sz((ζ − Sz(η)) + Sz(η)) = Sz(η + (ζ − Sz(η))). Since (ζ − Sz(η)) is
non-negative, it follows that we can add non-negative chips to η and then stabilize to obtain Sz(ζ).

Next, observe that Sz(ζ) = Sz(σ + `β), since we can first fire chips from (σ + `β) to obtain ζ,
and then stabilize.

Finally, Sz(ζ) is in the same coset as σ. Since σ + `β = σ − `∆δz, it follows that σ + `β is in
the same coset as σ. Since Sz(ζ) = Sz(σ + `β) is obtained by firing chips from (σ + `β), it follows
that Sz(ζ) is in the same coset as (σ+ `β), and thus the same coset as σ. Since Sz(ζ) is recurrent,
we are done.

Second, we show the uniqueness of this recurrent configuration.

Proposition 3.2.8. ([Hol08] Lemma 2.15): Let σ, ζ ∈V be recurrent configurations such that for
some w ∈ ZV , σ −∆w = ζ. Then σ = ζ.

Proof. Let w+ ∈ ZV be the positive component of w, so (w+)v =

{
wv wv > 0

0 wv ≤ 0
. Similarly, let

w− ∈ ZV be the negative component, so (w−)v =

{
wv wv < 0

0 wv ≥ 0
. Notice that ∆w = ∆(w+ + w−).

Therefore, we have

σ −∆w− = ζ + ∆w+

Let τ = σ −∆w− = ζ + ∆w+.
Next, let ε be as before. We know that ε can be selectively fired to obtain some configuration

α′ ≥ 1. Thus, for any m ∈ N, (mε) be can selectively fired to obtain some α = mα′ ≥ m. Thus, let
α be a configuration reachable from `β for some sufficiently large ` ∈ N, such that for all v ∈ V \{z},
(τ + α)v ≥ |wv| dv.
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Then, consider τ + `ε. By the lemma, we know for any recurrent configuration ζ, Sz(η + α) =
Sz(η + `ε) = η.

We can first selectively fire chips in (τ + `ε) to obtain τ + α. Then, we can fire each vertex v
such that wv > 0 exactly wv times to obtain (τ +α−∆(w+)) = ζ +α. Since ζ is stable, we obtain
Sz(τ + α) = Sz(ζ + α) = ζ.

Next, we can instead start from τ + α and fire each vertex v such that wv < 0 exactly (−wv)
times to obtain (τ+α+∆w−) = σ+α. Then since σ is stable, we obtain Sz(τ+α) = Sz(σ+α) = σ.

Schematically, these two processes are:

τ + α
Firings−−−−−→ τ + α−∆w+ = (ζ + ∆w+)−∆w+ + α = ζ + α

Sz−→ ζ

τ + α
Firings−−−−−→ τ + α+ ∆w− = (σ −∆w−) + ∆w− + α = σ + α

Sz−→ σ

Thus we conclude that ζ = Sz(τ + α) = σ.

Combining the two results, we obtain a bijection between the sandpile group and the collection
of recurrent chip configurations. We are almost ready to prove the isomorphism, but we need to
define a group operation on the collection of recurrent configurations. This binary operation is
simply addition, then stabilization. We show that the recurrent configurations are closed under
this operation below.

Proposition 3.2.9. Let σ, ζ be recurrent chip configurations. Then Sz(σ + ζ) is recurrent.

Proof. Since Sz(σ + ζ) is stable by definition, we must show it is accessible. Let η be an arbitrary
configuration. Since σ is accessible, there is some configuration ξ ≥ 0 (component-wise) such that
Sz(η + ξ) = σ. Then since ζ is recurrent, it is non-negative. Thus

Sz(σ + ζ) = Sz(Sz(η + ξ) + ζ) (40)

= Sz(η + ξ + ζ) (41)

Thus we have shown Sz(σ+ ζ) is reachable from η, by first adding (ξ+ ζ), and then stabilizing.
Since η was arbitrary. we are done.

Finally, we can prove the isomorphism.

Theorem 3.2.10. Let Rz(G) denote all recurrent configurations on G with global sink vertex z.
Let ∗ be a binary operation on Rz(G), defined (σ ∗ η) = Sz(σ + η). Then (Rz(G), ∗) is an abelian
group isomorphic to the sandpile group.

(Rz(G), ∗) ∼= S(G)

Proof. By 3.2.9, we know that Rz(G) is closed under ∗. Further, 3.2.7 and 3.2.8 together show
that there is a bijective map φ : S(G) → Rz(G), where φ maps each coset to its unique recurrent
configuration.

We must show that φ is a homomorphism. Let A,B ∈ ZV0 /∆(ZV ). Let σ ∈ A and ζ ∈ B denote
the recurrent representatives. Then notice that Sz(σ + ζ) is obtained by some sequence of firings
from (σ + ζ). Let u ∈ NV be the vector such that uv is the number of times v ∈ V is fired from
(σ + ζ) to obtain Sz(σ + ζ). Then (σ + ζ) = Sz(σ + ζ)−∆u. Thus Sz(σ + ζ) ∈ (σ + ζ + ∆(ZV )).
Thus,
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φ(A+B) = φ(σ + ∆(ZV ) + ζ + ∆(ZV )) (42)

= φ((σ + ζ) + ∆(ZV )) (43)

= Sz(σ + ζ) (44)

= σ ∗ ζ (45)

Since φ is a bijective homomorphism, which preserves the group operation of S(G), it imme-
diately follows that ∗ is a group operation on Rz(G). Verifying that ∗ obeys the group axioms is
simply a matter of checking the corresponding inverse identities with respect φ, which will obey the
group axioms since S(G) is a group. Thus Rz(G) is an abelian group, and φ is an isomorphism.

3.3 Dhar’s Burning Algorithm and the z-Recurrent Decomposition

So far, we have characterized the sandpile group in two ways: First, it is the set of chip configurations
“up to firing equivalence,” given by the cokernel of the Laplacian matrix. Second, it is the set of
all recurrent chip configurations, under the binary operation of addition and then stabilization.

Neither definition is equipped to deal with granular questions. For example, what does the
identity element of the sandpile group look like? So far, all we can say is that such an element
exists, and it is in the same coset as ~0.

Fortunately, a more concrete characterization of the sandpile group exists. It is given by Dhar’s
burning test, a simple algorithm which quickly verifies whether a configuration is recurrent.

In addition to giving us an easy way of identifying recurrent configurations, the burning test
allows us to identify configurations in the sink-free sandpile model with recurrent configurations in
the sink model, via the z-recurrent decomposition. Since the sink-free model is less well-behaved
than the sink model 8 this decomposition gives a useful bridge between the two. For example,
the z-recurrent decomposition forms a key component in Levine’s proof of the Threshold Energy
Density Theorem [Lev15]. 9

Throughout this section, let G = (V,E) be an undirected, connected graph with global sink
vertex z ∈ V .

Definition 3.3.1. Let G be a graph, and let z ∈ V be the global sink vertex. The z-recurrent
configurations on G, denoted Rec(z), are the set of all configurations ρ ∈ ZV0 such that:

i. ρ is stable with respect to z
ii. Every non-sink vertex fires exactly once in the stabilization of (ρ+ ∆δz) with respect to z.

Remark 3.3.2. Our definition is a slight modficiation of the definition of Rec(z) in [Lev15] is
slightly different - they require that ρ(z) = deg(z) instead of ρT~1 = 0. This distinction is just a
matter of convention. The purpose of both versions of the definition is just to ensure that two
configurations are considered the same if they only differ at the sink vertex. In our case, since we
identified recurrent configurations with elements of ZV0 /∆(ZV ), it is more convenient to require
that ρ ∈ ZV0 .

Theorem 3.3.3. Let ρ ∈ ZV . Then ρ ∈ Rec(z) iff ρ is recurrent (that is, ρ is stable and accessible).

8In particular, not every configuration will stabilize in the sink-free model. Consider the configuration where every
vertex v begins with deg(v) + 1 chips. After every finite sequence of firings, either some vertex never fired and so is
still unstable, or some vertex stopped firing first, and thus receives all its original chips back from its neighbors.

9For a long, detailed exposition of this result, see the first half of the book [CP18].
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Proof. =⇒: Suppose ρ ∈ Rec(z). Then ρ is stable by definition. We want to show ρ is accessible.
Let ζ be an arbitrary configuration. Recall that β denotes the configuration obtain by firing

the sink once from ~0. By definition, every non-sink vertex fires exactly once in the stabilization of
ρ+ β. Thus Sz(ρ+ β) = ρ+ (−∆δz)−∆(~1− δz) = ρ+ ∆(~1) = ρ. Thus Sz(ρ+ kβ) = Sz(ρ) for all
integer k ≥ 1, by 3.2.5.

Next, since z has positive degree, it has at least one neighbor. Thus β has a positive number of
chips at some non-sink vertex which is adjacent to v. Since G is connected, this vertex has a path
to every other vertex in the graph. Thus for large enough k, kβ can be selectively fired to obtain
some configuration α ≥ 1 entry-wise.

Let m ≥ 1 be a large enough integer such that ζ ≤ (ρ+mα). Then since kβ can be selectively
fired to obtain α, (km)β can be selectively fired to obtain mα.

Therefore, consider (ρ+mkβ). We can selectively fire to obtain ρ+mα, and then stabilize to
obtain ρ (since Sz(ρ+mkβ) = ρ). Since ζ ≤ ρ+mα, it follows that ρ is reachable from ζ. Simply
add (ρ+mα− ζ), and then stabilize.
⇐⇒: Suppose ρ is stable and accessible.
First, observe that Sz(σ+β) is accessible. To see this, let ζ be an arbitrary configuration. Then

since ρ is accessible, there exists α such that Sz(ζ+α) = ρ. Then Sz(ζ+α+β) = Sz(Sz(ζ+α)+β) =
Sz(ρ + β). Since Sz(ρ + β) is stable, it follows that Sz(ρ + β) is reachable from arbitrary ζ, and
thus Sz(ρ+ β) is recurrent.

Next, observe that since Sz(ρ + β) is reached from (ρ + β) by some sequence of firings, there
exists u ∈ NV such that uz = 0 and Sz(ρ + β) = ρ + β − ∆u. Since β = −∆δz, it follows
Sz(ρ+β) = ρ−∆(u+ δz). Thus ρ and Sz(ρ+β) are in the same coset with respect to ∆ZV . Since
both are recurrent, and each coset has a unique recurrent configuration, they must be equal. So
Sz(ρ+ β) = ρ.

Finally, notice that if we set u =
∑
v 6=z

δv, then ρ + β − ∆u = ρ − ∆~1 = ρ. Since the firing

histogram is unique, we conclude that u =
∑
v 6=z

δv, and so each non-sink vertex fires exactly once in

the stabilization of σ + β. Thus ρ ∈ Rec(z).

Example 3.3.4. Consider the cycle graph on 3 vertices. Suppose the vertices are numbered
(v1, v2, v3) and v1 is the global sink. Let (−2, 1, 1) be a chip configuration, where the ith entry gives
the number of chips at the vi. Dhar’s burning test shows (−2, 1, 1) is recurrent, as

(−2, 1, 1)
fire the sink−−−−−−−→ (−4, 2, 2)

fire v2−−−−→ (−3, 0, 3)
fire v3−−−−→ (−2, 1, 1)

With the characeterization of recurrent states via Dhar’s algorithm, we can prove a surprising
connection between the sink-free sandpile model and the model with sink, called the z-recurrent
decomposition. Roughly speaking, this extends the notion of “firing equivalence” developed in 3.1
in order to give a correspondence between chip configurations in the sink-free model.

Definition 3.3.5. Let σ, η ∈ ZV be chip configurations. We say σ, η are z-equivalent if there
exist u ∈ ZV and m ∈ Z such that

σ = η +mδz + ∆u

Evidently, z-equivalence is an equivalence relation on chip configurations. Note that z-equivalence
is very similar to the notion of equivalence of configurations with respect to cosets of ∆ZV . It is
slightly more powerful, though, because in addition to coset equivalence, the number of chips at
the sink does not matter.

Next, we develop a few lemmas.
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Lemma 3.3.6. ([Lev15], Lemma 8): Let σ ∈ ZV be a chip configuration, and z ∈ V the global
sink vertex.

a. σ is z-equivalent to a unique ρ ∈ Rec(z)
b. σ is stabilizable if and only if there exists u ∈ NV such that for all v 6= z,

(σ + ∆u)v < dv

c. If σ is stabilizable, then for all v ∈ ZV , σ + ∆v is stabilizable.
d. If σ ≤ σ′ (the inequality is coordinate-wise) and σ′ is stabilizable, so is σ.

Proof. a. By adding or subtracting vertices at the sink, we know σ is z-equivalent to some config-
uration in σ′ ∈ ZV0 . Let m ∈ Z be the integer such that σ = σ′ +mδz

Next, (σ′ + ∆(ZV )) ∈ S(G) is some sandpile group element. Thus there is a unique recurrent
configuration ρ in σ′+∆(ZV ). Since ρ is recurrent, ρ ∈ Rec(z). Thus since ρ ∈ (σ′+∆(ZV )), there
is some u ∈ ZV such that ρ = σ′ + ∆u. We conclude that σ = ρ+mδz + ∆u.

b. For the forward direction, if σ is stabilizable, there exists a sequence of firings stabilizing
σ. Suppose that i ∈ V is fired ui times. Then σ + ∆u represents the stabilized configuration, and
since each chip is fired a non-negative number of times, u ∈ NV .

Conversely, if such a u exists, simply fire each vertex ui times. The resulting configuration must
be stable since all v have fewer than dv chips.

c. We know there exists u ∈ NV such that σ + ∆u is stabilizable. Then let c = max
i∈V
|vi|. Let ~1

denote the all-ones vector. Notice that (v + c~1) is non-negative in every component. Then

σ + ∆u = σ −∆v + ∆v + ∆(c~1) + ∆u (46)

= σ −∆v + ∆(v + c~1 + u) (47)

Thus since v + c~1 + u ≥ 0 component-wise, and σ + ∆u is stable, by 8(b) we conclude that
σ −∆v is stabilizable.

d. Suppose σ′ is stabilizable, and u ∈ NV the firings of its stabilizaton. Then σ + ∆u ≤
σ′ + ∆u ≤ deg − 1 (entry-wise), so by 8(b) σ is stabilizable.

Lemma 3.3.7. Suppose σ ∈ ZV and σ can be stabilized in the sink-free model. Denote its unique
stabilization by S(σ). Then there must be some vertex which never fires in the stabilization.

Proof. Suppose for contradiction that every vertex fires at least once. Let v be the first vertex to
fire for the last time. Then right after v has fired for the last time, it has at least zero chips. Since
v is the first vertex to stop firing, all of its neighbors fire at least once after v is done firing. So v
receives at least dv additional chips. But then v will have at least dv chips in the final configuration.
Thus the final configuration will be unstable, which is a contradiction.

We are ready to prove the existence and uniqueness of the z-recurrent decomposition, which
states that every configuration is z-equivalent to a unique element of Rec(z).

Theorem 3.3.8. (Existence and Uniqueness of z-Recurrent decomposition): Given σ ∈
ZV and sink z ∈ V , there exist unique ρ ∈ Rec(z), m ∈ Z, and u ∈ ZV such that uz = 0, and

σ = ρ+mδz + ∆u

Moreover, σ is stabilizable in the sink-free model iff m < 0.
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Proof. By 3.3.6(a), there exists a unique ρ ∈ Rec(z) such that σ is z-equivalent to ρ, meaning that
there are c ∈ Z, w ∈ ZV such that s = ρ+ cδz + ∆w.

We wish to show the uniqueness of c, w. Since G is connected, we know the kernel of ∆ is
exactly the multiples of ~1. Therefore, let u = w − (wz)~1. Then ∆u = ∆w and uz = 0. Since the
kernel is exactly the multiples of ~1, u is uniquely determined by the fact that it is linearly equivalent
to w and that uz = 0.

Next, since |∆u| = 0, it follows c = |s| − |ρ|, so c is uniquely determined. Let m = c. Then
there are unique ρ,m, v such that s = ρ+mδz + ∆u.

Finally, we want to show that σ is stabilizable (with respect to the sink-free model) iff m < 0.
If m < 0, then ρ+mδz is stable. Then by 3.3.6(c), ρ+mδz + ∆v is stabilizable, so σ is stabilizable.

If m = 0, then ρ+mδz = ρ is unstable, since z will have at least dz chips.
To show it is not stabilizable, note that by definition, every vertex except z will fire exactly once

in the stabilization of (ρ+ ∆δz) with respect to z. Further, by the abelian property, if S(ρ+ ∆δz)
exists, then the order of firings does not matter. So suppose we re-order the firings so all firings of
z occur at the end. Then since every vertex besides z fires once in the stabilization with respect
to z, every vertex will fire at least once if we re-order so z fires at the end. But then z receives at
least dz chips, so it must fire at least once. Then every vertex of G fires in the stabilization (with
respect to the non-sink model) of ρ + ∆δz. By the lemma above, it follows that S(ρ + ∆δz) does
not exist.

Thus σ = ρ+ ∆u cannot be stabilized, since otherwise we could translate u by ~1 and contradict
3.3.6(b).

Thus since σ cannot be stabilized for m = 0, by 3.3.6(d) neither can σ for m > 0.

3.4 Cuts and Flows, Again

In this section, we give a final characterization of the sandpile group, in terms of the cut and flow
spaces defined in section 2.2. Our exposition largely follows Biggs ([Big97], [Big99]), who studied
a version of the sandpile model called the dollar game.

Throughout this section, let G = (V,E) denote a connected, undirected graph with arbitrary
edge orientation. Let D ∈ ZV×E denote the incidence matrix, and BI , ZI denote integral cut and
flow space respectively.

Definition 3.4.1. The Picard group of a graph G with arbitrary orientation is the quotient
group

Pic(G) = D(ZE)/D(BI)

We will show that the Picard group is isomorphic to the sandpile group.

Proposition 3.4.2. Let ∆ be the graph Laplacian, and let σ : ZV → Z be σ(~v) = ~1T~v. Then:

S(G) ∼= Ker(σ)/∆(ZV )

Proof. Recall that the definition of the sandpile group is just ZV0 /∆(ZV ). We are left to show
Ker(σ) = ZV0 . This is clear from definitions, as ZV0 = {v ∈ ZV : ~1T~v = 0} = {v ∈ ZV : σ(v) = 0} =
Ker(σ).

Proposition 3.4.3. ([Big99], 7.1) D(ZE) = Ker(σ).

Proof. ⊆: Clearly if De is the column of D corresponding to some e ∈ E, then σ(De) = 0, since
Dh(e),e = 1, Dt(e),e = −1, and all other entries are zero. Thus since D(ZV ) is just integer linear

combinations of columns of D, we obtain D(ZE) ⊆ Ker(σ).
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⊇: Let f ∈ Ker(σ). Fix x ∈ V . Then

f =
∑
v∈V

fvδv (48)

= (
∑
v∈V

fvδv)− δx(~1T f) (49)

= (
∑
v∈V

fvδv)− δx(
∑
v∈V

fv) (50)

=
∑
v∈V

fv(δv − δx) (51)

=
∑

v∈V \{x}

fv(δv − δx) (52)

(53)

Thus, since f ∈ ZE , it suffices to show that for all v 6= x that (δv − δx) ∈ D(ZE).
Fix v ∈ V \{x}. SinceG is connected, there must exist a path from x to v, say v0, e1, v1, e2, v2, ..., vr−1, er−1, vr,

where v0 = x and vr = v. Then

δv − δx = δvr − δv0 (54)

= δvr − δvr−1 + δvr1 − δvr−2 + ...+ δv1 − δv0 (55)

= D(±δer) +D(±δer−1) + ...+D(±δe1) (56)

Where δe ∈ ZE is the indicator vector at the edge e ∈ E. Clearly each D(±δi) ∈ D(ZE). Thus
by linearity, it follows δv − δx ∈ D(ZE), and we conclude that f ∈ D(ZE).

Proposition 3.4.4. ([Big99], 7.2) DT (ZV ) = BI .

Proof. ⊆: Let x ∈ ZV and z ∈ Z. Then

〈z,DTx〉 = zTDTx (57)

= (DTx)T z (58)

= xTDz (59)

= xT~0 = 0 (60)

Since z was arbitrary, it follows that (DTx) ∈ Z⊥, so DTx ∈ B. Further, since DT is an integer
matrix and x is an integer vector, DTx ∈ ZE . Thus (DTx) ∈ ZE ∩B = BI .
⊇: If b ∈ BI , then notice b =

∑
v∈V

avb{v} =
∑
v∈V

avD
T δv where av ∈ Z for all v. Thus since b is

an integer linear combination of the rows of DT , b ∈ DT (ZV ).

Combining these three propositions gives the result easily.

Theorem 3.4.5. S(G) ∼= Pic(G)

Proof. We simply perform a series of substitutions.
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S(G) ∼= Ker(σ)/∆(ZV ) Proposition 3.4.2 (61)
∼= D(ZE)/∆(ZV ) Proposition 3.4.4 (62)

∼= D(ZE)/(DDT (ZV )) ∆ = DDT (63)
∼= D(ZE)/(D(DTZV )) (64)

∼= D(ZE)/D(BI) Proposition 3.4.3 (65)
∼= Pic(G) (66)

Notice that S(G), Pic(G), and all the quotient groups listed in the substitutions have the same
group operation: namely coset addition. So the substitutions give group isomorphisms.

Remark 3.4.6. Notice that under both the usual 1-norm and 2-norm for Euclidean vectors, the
least nonzero vector in BI corresponds to the minimum cut of the graph. Given the characterization
of S(G) as D(ZE)/D(BI), we might speculate that the minimum cut vector in BI might correspond
to some recurrent configuration of S(G), with algorithmic implications to follow. However, it is
unclear how to make use of this identification, since BI contains all cuts, and each element of the
sandpile group corresponds to a coset of D(BI). Thus, the isomorphism presented here seems too
coarse-grained to give information about any particular cut. Instead, it characterizers the entire
collection of integral cuts.
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4 Smith Normal Forms and Sandpiles

For any mathematical object, it is natural to ask what its simpler constituent parts are, and
whether it can be described completely in terms of these simpler components. For finite abelian
groups, the basic building blocks are cyclic groups, whose multiplicities and orders are described
by the invariant factors of the group. Up to isomorphism, every finite abelian group is completely
captured by these invariant factors, as we describe in 4.1.

We are thus interested in the invariant factors of sandpile groups. Towards this end, in 4.2 we
will introduce the Smith Normal Form of an integer matrix, which is a convenient tool to compute
the invariant factors of its cokernel group. Then in 4.3, we will prove that the invariant factors
of the sandpile group are indeed given by the cokernel of the reduced Laplacian matrix. This will
allow us to prove several remarkable facts about sandpile groups, including the fact that every finite
abelian group is the sandpile group of some graph.

Finally, in section 4.4 we will turn our attention to the trivial count, which counts the number
of Smith factors equal to 1. We demonstrate lower bounds based on diameter of the graph, and
in terms of product graphs. Applied to the hypercube graph, the resulting lower bound is tight.
Finally, we present the results of numerical experiments concerning the Smith factors of grid graphs
and certain expander graphs, and formulate conjectures on the basis of these experiments.

4.1 Invariant Factors of Finite Abelian Groups

In this section, we review the Sylow theorems and the fundamental theorem of finitely generated
abelian groups. Together, these results give a classification of finite abelian groups in terms of their
invariant factors, which are simply the multiplicities and orders of their cyclic subgroups of the
form Z/nZ.

Theorem 4.1.1. (Sylow): Let G be a (not necessarily commutative) group of order n. If n = pαm
for some prime p, and integer α ≥ 1, and gcd(p,m) = 1, then

(i) There exists a subgroup of G order order pα. We call this a Sylow p-subgroup of G.
(ii) If P,Q ≤ G are p-subgroups and P is a sylow p-subgroup, then Q is contained in some

conjugation of P . That is, there exists g ∈ G such that

Q ≤ gPg−1

(iii) The number of sylow p-subgroups of G is (1 + kp) for some k ∈ N.
(iv) Let P be a Sylow p-subgroup. Then P is the unique Sylow p-subgroup of G iff P is conjugate

in G. In particular, if G is abelian, then there exists a unique Sylow p-subgroup for all p dividing
|G|.

Proof. See, for example, [DF04] section 4.5.

Theorem 4.1.2. (Fundamental Theorem of Finitely Generated Abelian Groups):Let G be a finitely
generated abelian group. Then there exist unique r, s ∈ N and n1, ..., ns ∈ N such that

G ∼= Zr × (Z/n1Z)× · · · × (Z/nsZ)

Subject to:
(i) For all j, nj ≥ 2
(ii) For 1 ≤ i ≤ s− 1, ni+1|ni

Proof. See, for example, [DF04] section 5.2.
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Corollary 4.1.3. (i) G is finite iff r = 0
(ii) If r = 0, then |G| = n1 · n2 · · ·ns
(iii) If p is a prime and p| |G|, then there exists i ∈ [s] such that p|ni. Consequently, p|ni−1, p|ni−2, ..., p|n1.
In particular, p|n1 for all prime p dividing |G|.

Putting these results together, we obtain a simple classification of finite abelian groups.

Theorem 4.1.4. (Classification of Finite Abelian Groups): Let G be a finite abelian group of order
n. Let n have prime decomposition

n = pα1
1 pα2

2 · · · p
αk
k

(i) Let Ai be the unique Sylow pi-subgroup of G. Then

G ∼= A1 ×A2 · · · ×Ak
(ii) For each Ai, there exist β1, ..., βt ∈ N+ which are a partition of αi, and such that

Ai ∼= Z/pβ1i Z× · · · × Z/pβti Z
These β1..., βt are precisely the invariant factors of the group Ai, which exist and are unique by

the fundamental theorem of finitely generated abelian groups.

Remark 4.1.5. Theorem 4.1.4 gives a simple way of counting and enumerating all abelian groups
of order n, up to isomorphism. We can summarize the steps as follows.

Input: Abelian group of order n.
Step 1: Find the prime decomposition of n, say n = pα1

1 pα2
2 · · · p

αk
k

Step 2: For each αi, count the number of ways to partition the positive αi into a sum of
positive integers.
Step 3: For each partition β1, ..., βt of αi, obtain a group of order pαi

i , namely

Z/pβ1i Z× · · · × Z/pβti Z

Output: Conclude that there are q1 · · · qk unique groups of order n, by taking the product of
k groups of order pα1

1 , ..., pαk
k respectively via step 3.

For example, since 36 = 2232 there are four abelian groups of order 36, namely:

• (Z/2Z)2 × (Z/3Z)2

• (Z/4Z)× (Z/3Z)2

• (Z/2Z)2 × (Z/9Z)

• (Z/4Z)× (Z/9Z)

4.2 Existence and Uniqueness of Smith Normal Form

Since the sandpile group is a finite abelian group, it is natural to ask what the invariant factors of
the sandpile group are, for families of interesting graphs. Here, the definition of the sandpile group
in terms of the cokernel of the Laplacian matrix is useful. Given any integer matrix, its cokernel is
an abelian group with a finite number of generators (namely, the columns of the matrix).

The Smith Normal Form of a (square) integer matrix M is a unique diagonal matrix whose
entries give the invariant factor decomposition of coker(M). Studying the Smith Normal Forms is
thus a valuable tool for understanding the sandpile group, and cokernel groups more generally.
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Definition 4.2.1. For an integer matrix M ∈ Zn×n and k ∈ [n], the kth determinantal divisor
of M is the g.c.d. (greatest common divisor) of all (k× k) minors of M . Denoting this quantity by
dk(M), we have

dk(M) = |gcd{det(MI,J) : I, J ⊂ [n], |I| = |J | = k}|

Define d0(M) = 1.

We can now define the Smith Normal Form of a square integer matrix.10

Definition 4.2.2. A square integer matrix M ∈ Zn×n is in Smith Normal Form if its only
nonzero entries are on its main diagonal, and if its diagonal entries M1,1, ...,Mn,n are given by

Mi,i =
di(M)

di−1(M)

That is, the diagonal entries are ratios of successive determinantal divisors of M . The nonzero
diagonal entries M1,1, ...,Mr,r are called the Smith invariant factors of M .

There is a relatively simple algorithm for computing the Smith Normal Form, which we state
in the box below. By proving that the algorithm converges to a unique solution for every input, we
will have proved existence and uniqueness.

Smith Normal Form Algorithm (Adapted from [CP18], 2.33)
Input: Integer matrix M ∈ Zn×n
Step 1: If n = 1, return |M1,1|. If M contains all zeroes, return M .
Step 2: Permute the rows and columns of M so that M1,1 is the least nonzero entry in absolute
value. If M1,1 is negative, set M1,1 to −M1,1.
Step 3: Add integer multiples of row 1 to other rows, and column 1 to the other columns,
until every entry in the first row and column of M besides M1,1 is zero. If at any point a
nonzero entry in the matrix is encountered which is smaller than M1,1 in absolute value, go
back to step 2.
Step 4: Let M ′ be the submatrix of M consisting of rows 2, ..., n and columns 2, ..., n. If any
entry in M ′, say Mi,j , is not divisible by M1,1, add column j to column 1. Go back to step 2.
Step 5: LetM ′ be the submatrix ofM consisting of rows 2, ..., n and columns 2, ..., n. Compute
the Smith Normal Form of M ′ by returning to step 1.
Output: Return a matrix whose first diagonal entry is M1,1 and whose subsequent diagonal
entries are from the Smith Normal Form of M ′.

Theorem 4.2.3. For any integer matrix M ∈ Zn×n, the Smith Normal Form of M , denoted
S ∈ Zn×n exists and is unique. It is the unique output of the algorithm described above.

Further, there exist integer matrices A,B ∈ Zn×n such that det(A) = det(B) = ±1 and

AMB = S

Proof. Induction on n.
Base case: For n = 1, the algorithm just returns the sole entry of M . Since there is only

one choice of (1 × 1) submatrix, d1(M) = |M1,1|. Since d0(M) = 1 by definition, it follows that

|M1,1| = d1(M)
d0(M) , so it is indeed the sole Smith invariant factor.

10As it turns out, the Smith Normal Form exists for for any matrix with entries in a principal ideal domain. To
simplify presentation, we include only the necessary results about square matrices with entries in Z.
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Inductive step: Suppose the algorithm is correct up to some k ∈ N. Let n = k + 1.
Observe that permuting rows and columns, and adding integer multiples of rows and columns to

each other, are all elementary row operations. So they do not change the determinantal divisors of
M . Moreover, each such operation corresponds to either left or right-multiplying M by a suitable
elementary row matrix. Taking the product of these matrices gives the unimodular matrices A,B
in the statement of the theorem.

Thus if step 5 is reached, then by inductive hypothesis the last k Smith Invariant Factors of M
are correctly computed, by inductive hypothesis. We are left to prove correctness and convergence
of steps 1 through 4. We proceed by cases:

Case 1 : The algorithm halts on step 1. Then M consists of all zeroes. Thus all determinantal
divisors are zero, and so all Smith Invariant Factors are zero.

Case 2 : M does not halt on step 1. Then M does not consist of all zeros. After step 2, M will
be permuted so that M1,1 is minimal among the nonzero entries of M in absolute value.

Case 2(a): If M1,1 is the greatest common divisor of all entries of M , then steps 3 and 4 will
proceed without returning to step 2, and M1,1 will correctly be returned as the first Smith invariant
factor.

Case 2(b): Suppose instead that M1,1 is not the greatest common divisor of all entries of M .
Then in either step 3 or 4, the algorithm will return to step 2 after some row/column permutations
and additions. As argued above, none of these operations change the determinantal divisors.

We claim that regardless of whether step 3 or 4 triggers the return to step 2, the (1, 1) entry of
M will strictly decrease in absolute value. This guarantees that step 5 is reached in finitely many
iterations of steps (2-4).

Case 2(b)(i): Step 3 redirects to step 2. Then some Mi,j 6= M1,1 is encountered such that
0 < |Mi,j | < |M1,1|. Thus the new (1, 1) entry is strictly smaller in absolute value.

Case 2(b)(ii): Step 4 redirects to step 2, after step 3 completes an iteration without returning
to step 2. Then the Mi,j from step 4 is added to the zero entry in Mi,1. Thus Mi,1 = Mi,j . Notice
the only nonzero entries in the first row and column of M are M1,1,Mi,1. Since M1,1 does not divide
Mi,1, there is some a ∈ Z such that 0 < |Mi,1 − aM1,1| < |M1,1|. Thus subtracting a multiples
of the first row from the ith row will result in the (i, 1) entry being less than the (1, 1) entry in
absolute value. Thus, the first and ith rows of M to be swapped, and the (1, 1) entry will be strictly
smaller in absolute values.

Thus, in either case the (1, 1) entry of M strictly decreases. So after a finite number of steps,
Step 5 will be reached.

Since the value of M1,1 at step 5 is guaranteed to divide all other entries of the matrix, and
determinantal divisors are unchanged by row/column permutations and additions, we conclude that
M1,1 is the correct first Smith invariant factor. Thus by inductive hypothesis, we are done.

Having shown that the Smith Normal Form exists and is unique, we will next relate the structure
of a sandpile group of a graph to the Smith Normal Form of its reduced Laplacian matrix.

4.3 Smith Invariant Factors of Sandpile Groups

Having established the relevant background and motivation, in this section we can use the Smith
Normal Form of the reduced Laplacian matrix to completely describe the sandpile group of a graph.
As we then show, the Smith Normal Form allows one to easily deduce several powerful facts about
sandpiles as mere corollaries.

Theorem 4.3.1. Given a finite, connected graph G with Laplacian matrix ∆ ∈ Zn×n, let z ∈ V be
a fixed sink vertex. Then if ∆z ∈ Z(n−1)×(n−1) denotes the reduced Laplacian along the row/column
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corresponding to z, let S ∈ Z(n−1)×(n−1) denote the unique Smith Normal Form of ∆z. Then for
some unimodular matrices A,B,

∆z = ASB = A


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn−1

B
Here, α1|α2, α2|α3, and so on. Each αi ≥ 0.
Then if we let Z/0Z denote the trivial group, the sandpile group is given by:

S(G) ∼=
n−1∏
i=1

Z/αiZ

Proof. First, notice that since G is connnected, its kernel is one-dimensional and spanned by ~1.
Thus ∆z is invertible, and we can write the sandpile group as the cokernel of ∆z. That is, S(G) =
ZV0 /∆(ZV ). Since ZV−z ∼= ZV0 and ∆(ZV ) ∼= ∆z(ZV−z), it follows that S(G) ∼= Zn−1/∆z(Zn−1).

Next, let the Smith Normal Form of ∆z be ∆z = ASB. Notice that A is a finite product
of row operation matrices, and B is a finite product of column operation matrices. In fact, the
row/column operations are given by:

i. Swapping two rows (column)
ii. Negating a row (column)
iii. Adding one row (column) to another
All of these operations do not change the span of the lattice 11 generated by the rows (columns)

of S.
Thus, we can write A−1∆zB

−1 = S, and coker(∆z) = coker(S).
Next, the generating set of the lattice spanned by the columns of S is simply α1e1, ..., αn−1en−1.

So

S(G) ∼= coker(∆z) = coker(S) ∼= Zn−1/(
n−1∏
j=1

αjZ) ∼=
n−1∏
j=1

(Z/αjZ)

We can now derive two amazing facts as easy corollaries.

Corollary 4.3.2. The order of the sandpile group of G is equal to the number of labeled spanning
trees of G, or its tree number κ(G).

|S(G)| = κ(G)

Proof. By the matrix-tree theorem, the number of labeled spanning trees is equal to any cofactor
of the Laplacian matrix. Thus since ∆z = ASB and A,B are unimodular, it follows that:

κ(G) = det(∆z) = det(A)det(S)det(B) = det(S) =

n−1∏
i=1

αi = |S(G)|

11By lattice we mean the set of all linear combinations with integer coefficients.
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Corollary 4.3.3. For a finite, connected graph G, the sandpile group is independent of choice of
sink.

Proof. Let y, z ∈ V be distinct choices of sink. Let My be the matrix obtained by swapping rows
1, y and columns 1, y of ∆. Let Mz be analogously defined. Since Smith invariant factors are
unchanged by row/column swaps, the output of the Smith Normal form algorithm on My,Mz will
be equal. Since det(∆) = 0, the nth Smith invariant factor will be zero. The factors 1, ..., n − 1
will be equal, and correspond to the Smith factors of the reduced Laplacians ∆y,∆z respectively.
Thus the sandpile groups with y, z as sink have the same Smith invariant factors, and thus must
be isomorphic.

Remark 4.3.4. If G1, G2 are isomorphic graphs, then a permutation of the rows/columns of the
Laplacian of G1 gives G2. Thus, the Smith normal forms of ∆1,∆2 are equal. In particular, we
obtain that the sandpile group is an isomorphism invariant of its graph, so G1

∼= G2 ⇒ S(G1) ∼=
S(G2). However, the converse is not true. Consider the path graph and star graph on n vertices.
It can be shown that any tree has a trivial sandpile group. So both the path and star graph have
isomorphic sandpile groups, but the graphs are clearly not isomorphic for n > 3.

In general, not much is known about the exact Smith invariant factors of various classes of
graphs. We gather some known results in the following table.

Graph Notation Description (n− 1) Smith Invariant Factors

Kn Complete graph on n vertices (1, n, ..., n) (see [Big97], Sec. 30)
Tn Tree on n vertices (1, 1, ..., 1)
Cn Cycle graph on n vertices (1, 1, ..., 1, n) (see Prop 4.3.6)

Kn1,n2,...,nk
Complete multipartite graph on

k∑
i=1

ni vertices Known (see [JNR03])

Hn Boolean hypercube on 2n vertices Partial Results (see [Bai03])
k∏
i=1

Kni Product of complete graphs on n1, ..., nk vertices Partial results (see [JNR03])

In the case of trees, since the number of labeled spanning trees is exactly 1 (namely, the graph
itself), we can exactly determine the sole element of sandpile group.

Proposition 4.3.5. Let G be an arbitrary connected graph with sink z. Let s ∈ ZV be the
configuration where for v ∈ V \ {z}, sv = deg(v) − 1, and sz is arbitrary. Then s is a critical
configuration.

Proof. We claim that s satisfies Dhar’s burning algorithm.
Fire the sink once. Then every neighbor of the sink is unstable, so fire each of them once. Then

each of the neighbors of those vertices, which have not already been fired, are unstable, so fire
those. Inductively, since G is connected, every vertex will fire at least once.

Suppose that during the stabilization, some v 6= z fires twice. Then it received at least deg(v)+1
chips from its neighbors throughout the stabilization. Thus, at least one of its neighbors fired twice.
Suppose w 6= z is the first vertex to fire twice. Then upon its second firing, it will have at most
deg(w) − 1 chips, since it lost deg(w) chips during its first firing and then gained back at most 1
chip from each neighbor. But then w will not fire twice. Thus no vertex fires twice.

Since every vertex fires exactly once, by Dhar’s burning test s is critical.
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As previously shown, every (finite, connected, undirected) graph has a corresponding finite
abelian in the form of its sandpile group. Remarkably, a partial converse to this statement is also
true: that is, every finite abelian group is the sandpile group of some graph!

First, we need to find a graph whose sandpile group is cyclic. As one might guess, the cycle
graph has this property.

Proposition 4.3.6. Let Cn be the undirected cycle graph on n vertices. Then

S(Cn) ∼= Z/nZ

Proof. Observe that there are n labeled spanning trees of G, so the order of S(Cn) is n. Next,
notice the reduced Laplacian of Cn along any single vertex is of the form

1 −1 0 0 · · · 0
−1 1 −1 0 · · · 0
0 −1 1 −1 · · · 0
...

...
...

...
...

...
−1 0 0 · · · −1 1


Thus, deleting the leftmost column and bottom row gives a lower-triangular sub-matrix, with

−1 along its main diagonal. Thus its determinant thus ±1. Deleting successive rows and rows
preserves the upper-triangularity of the sub-matrix. Thus d0(∆z) = d1(∆z) = ... = dn−2(∆z) = 1.
Thus every Smith factor but the largest equals 1.

Finally, the product of the Smith Invariant factors gives the order of G. Thus the largest Smith
factor must equal n, and we conclude that S(Cn) ∼= (Z)n−1 × Z/nZ ∼= Z/nZ.

Next, we define and prove a more general statement about the sandpile group of a “glued
graph.”

Definition 4.3.7. Let G1, G2 be undirected graphs. Let G be the graph formed by identifying
G1, G2 along a single vertex v. That is, select some v1 ∈ V (G1) and v2 ∈ V (G2). Then V (G) =
{v} ∪ (V (G1) \ {v1}) ∪ (V (G2) \ {v2}).

For w ∈ V (G1), (v, w) ∈ E(G) ⇐⇒ (v1, w) ∈ E(G1), and for w ∈ V (G2), (v, w) ∈ E(G) ⇐⇒
(v2, w) ∈ E(G2). All edges not incident to v1, v2 in G1, G2 are included as well. Then v is the
articulation point of G, and G1, G2 are the articulated components.

Proposition 4.3.8. ([Kli18] 4.5.9): Let G be the graph with articulation point v and articulated
components G1, ..., Gk. Then the sandpile group of G is the product of the sandpile groups of its
articulated components.

S(G) ∼= S(G1)× S(G2) · · · × S(Gk)

Proof. Consider the reduced Laplacian Lv of G, which has the row and column corresponding to v
deleted. Evidently Lv can have its rows and columns permuted to become block-diagonal, where
each block is the Laplacian of some articulated component Gi reduced along its row and column
corresponding to v.

Let S be the Smith Normal Form of Lv. Observe that the blocks of S give the smith normal
forms for the reduced Laplacian of each Gi. Thus, the Smith invariant factors of the ith diagonal
block give the invariant factors of S(Gi). The result follows.

The desired result then follows from the previous two facts.
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Corollary 4.3.9. ([Kli18] 4.5.9): Every finite abelian group is the sandpile group of some graph.

Proof. Let G be a finite abelian group. Take its elementary divisor decomposition. For each cyclic
factor Z/mZ, take the cycle graph on m vertices. Glue all of the cycle graphs on a single vertex.

4.4 Trivial Counts of Products and Expanders: Experiments and Conjectures

In general, it is difficult to determine the Smith invariant factors for the sandpile group of a family
of graphs. The proof of 4.3.6, for example, is instructive, as it relies entirely on the particularly
simple structure of the Laplacian of Cn. While we might hope to apply similar methods to other
graphs with “nice” Laplacians (and indeed, this is exactly what others have done - see e.g. [Big97],
[Bai03]), it is unclear what to do absent some clever argument about the Laplacian structure.

Given this difficulty, we are interested in relaxations and easier versions of the broader question,
which is understanding the entire invariant factor decomposition of a sandpile group. This section
will study one such relaxation, which asks how many Smith invariant factors are trivial (equal to
1). These factors are called trivial since they correspond to the trivial group Z/Z in the invariant
factor decomposition of the sandpile group, and thus make no contribution to its structure.

Definition 4.4.1. If G is a connected, undirected graph, let b(G) denote the multiplicity of 1 as
a smith factor of S(G). We call b(G) the trivial count of S(G). Notice that b(G) is the largest
value of k such that sk(G) = 1.

Recall that b(Cn) = n − 2, b(Kn) = 1, and b(Tn) = n − 1, where Tn is any tree on n vertices.
Thus, heuristically we can say that if G has large b(G), then the structure of the sandpile group is
“closer” to a tree or cycle graph than a complete graph.

Of course, this begs the question: What exact properties of trees, cycles, and complete graphs
explain this discrepancy in their trivial counts? It is difficult to say, and in this section we will try
to better understand the meaning and value of the trivial count in various graphs.

First, we review some known lower bounds on the trivial count.

Proposition 4.4.2. ([RMW93], Theorem 1): Let G be a connected, undirected graph. Let S ⊂ V ,
|S| = k, and suppose that G[S] (the induced subgraph) is a forest on w components. Suppose each
component is a path on at least two vertices. Then dk−w(G) = 1 (the (k − w)th determinantal
divisor of ∆(G)), so b(G) ≥ k − w.

Proof. Order the vertices of V so that S gives the first k vertices. Order the vertices of S according
to the forests in G[S]. For each (r× r) submatrix in the top left (k× k) corresponding to a tree in
G[S] forest, removing the first row and last column gives an upper triangular matrix with −1 on
the main diagonal. Therefore the determinant of this submatrix is ±1.

We can repeat this procedure for every path inside G[S]. Thus since there are w components,
there exists a (k − w)× (k − w) submatrix of determinant ±1, and thus dk−w(G) = 1.

Remark 4.4.3. Notice that this argument implicitly proves that the path graph Pn has b(G) ≥
n− 2.

Corollary 4.4.4. b(G) ≥ diam(G) for connected G.

Proof. If G has diameter d, then there exist u, v ∈ V such that u = v1, v = vd+1, and v1, ..., vd+1 is
a path through G forming the shortest path from u to v. Then let S = {v1, ..., vd+1}. Observe that
G[S] is a path, since if there were any edges outside the u → v path, these would give a shorter
u→ v path.

Therefore b(G) ≥ (d+ 1)− 1 = d.
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Corollary 4.4.5. If G is connected, then b(G) ≥ 1, with equality iff G = Kn.

Proof. First, diam(G) ≥ 1, so b(G) ≥ diam(G) ≥ 1.
Second, if G = Kn then we know b(Kn) = 1. If G 6= Kn then diam(G) ≥ 2, so b(G) ≥ 2 > 1.

Next, we turn our attention to products of graphs, whose Laplacian matrices can be easily
analyzed with block-matrix methods. We need a few lemmas first.

Definition 4.4.6. Given a graph G on n vertices, and k ≤ n, let dk(G) = dk(∆(G)). That is,
dk(G) denotes the kth determinantal divisor of ∆(G).

Proposition 4.4.7. If G is a connected, undirected graph, and dk(G) = ±1, then b(G) ≥ k.

Proof. Recall that if sm is the mth Smith invariant factor, that sm = dm(G)
dm−1(G) .

If dk(G) ± 1 then there is some (k × k) minor of ∆(G) equal to ±1. Thus since ∆(G) is an
integer matrix, all submatrices of this minor have determinant ±1. Thus d0(G) = d1(G) = ... =
dk(G) = ±1.

We conclude that s1 =
∣∣∣d1(G)
d0(G)

∣∣∣ = 1, and s2 =
∣∣∣d2(G)
d1(G)

∣∣∣ = 1, and so on up to sk. Thus b(G) ≥ k.

Lemma 4.4.8. Let A be a (2n× 2n) block-diagonal matrix of the form

A =

[
M1 O
N M2

]
Where O is an (n× n) matrix of zeroes. Then

det(A) = det(M1)det(M2)

Proof. Let Sk denote the set of permutations of a set of k elements.
The Leibniz formula for determinants gives

det(A) =
∑
σ∈S2n

sgn(σ)
∏
i∈[2n]

Ai,σ(i)

Let S′ ⊂ S2n be all π ∈ S2n such that π([n]) = [n] (so π sends [n] to [n], and {n+ 1, ..., 2n} to
{n+ 1, ..., 2n})

Suppose σ ∈ S2n \ S′. Then there exists some j ∈ [n] such that σ(j) > n. Then Aj,σ(j) = 0,
so this permutation contributes nothing to the summation in the Leibniz formula for det(A). It
follows that

det(A) =
∑
σ∈S′

sgn(σ)
∏
i∈[2n]

Ai,σ(i)

Evidently each σ ∈ S′ is unique determined by a pair of elements π, π′ ∈ Sn, where π determines
how σ acts on [n], and π′ determines how σ acts on [2n] \ [n]. Thus

sgn(σ)
∏
i∈[2n]

Ai,σ(i) = sgn(π)sgn(π′)
∏
i∈[n]

Ai,π(i)Ai+n,π(i)+n

Taking the summation over all σ ∈ S2n, it follows that det(A) = det(M1)det(M2).

An almost identical argument gives the generalization to block-triangular matrices.
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Corollary 4.4.9. Let A be a (kn× kn) block-diagonal matrix of the form

A =


M1 O O · · · O
∗ M2 O · · · O
...

...
...

...
...

∗ ∗ ∗ · · · Mk


Where O is an (n× n) matrix of zeroes, and ∗ is any (n× n) matrix. Then

det(A) = det(M1)det(M2) · · · det(Mk)

Now, we can prove a lower bound on any product involving a cycle or path graphs. Our method
is a generalization of the ideas in [Bai03].

Proposition 4.4.10. Let Gn be any graph on n vertices, Pm denote the path graph on m vertices,
and Cm denote the cycle graph on m vertices. Then

i. b(Gn × Pm) ≥ n(m− 1)
ii. b(Gn × Cm) ≥ n(m− 2)

Proof. i. Let Ln = L(Gn) and let Ln,k = Ln + kI. Let I denote the (n× n) identity matrix and O
the (n× n) matrix of all zeros. Then notice that

L(Gn × Pm) =


Ln,1 −I O · · · O
−I Ln,2 −I · · · O
O −I Ln,2 · · · O
...

...
. . .

...
O O · · · −I Ln,1


Deleting the first column and last row (in block form) gives a lower triangular matrix whose

main diagonal has (m−1) copies of −In. Therefore dn(m−1) = 1, since there is an n(m−1)×n(m−1)
block of the diagonal matrix whose determinant is ±1. Deleting additional rows and columns gives
that d1 = d2 = ... = dn(m−1) = 1. Thus the first n(m− 1) Smith invariant factors equal 1.

ii. With the same notation, the Laplacian in block form is given by:

L(Gn × Cm) =


Ln,1 −I O · · · −I
−I Ln,2 −I · · · O
O −I Ln,2 · · · O
...

...
. . .

...
−I O · · · −I Ln,1


Deleting the first row, last row, first column, and last column gives a lower triangular matrix

whose main diagonal has (m − 2) copies of −In. Therefore dn(m−2) = 1, since there is an n(m −
2)× n(m− 2) block of the diagonal matrix whose determinant is ±1. So the first n(m− 2) Smith
invariant factors equal 1.

Writing certain families of graphs as products with a path or cycle, we can give lower bounds
on the trivial count.

Corollary 4.4.11. i. Let Hn denote the hypercube graph on 2n vertices. Then b(Hn) ≥ 2n−1.
ii. Let Grn,m := Pn × Pm denote the grid graph on n · m vertices, with no boundary. Then

b(Grn,m) ≥ max{n(m− 1),m(n− 1)}.
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iii. Let Gr′n,m := Cn × Cm denote the grid graph on n · m vertices, with boundary. Then
b(Gr′n,m) ≥ max{n(m− 2),m(n− 2)}.

Proof. i. Notice that Hn = Hn−1×P2. Thus since Hn−1 has 2n−1 vertices, b(Hn) = b(Hn−1×P2) ≥
2n−1.

ii. The graph products commute in this case - that is, Pn×Pm ∼= Pm×Pn. Apply the proposition
twice.

iii. The graph products commute in this case - that is, Cn × Cm ∼= Cm × Cn. Apply the
proposition twice.

As it turns out, the bound in (i) is tight - see [Bai03]. We conjecture that the bound in (ii)
is tight when n = m, and the bound in (iii) is tight when n = m and both are even. Numerical
experiments support these conjectures for small n,m - see Figure 1.

Conjecture 1: (a) b(Pn × Pn) = n(n− 1).
(b) If n is even, then b(Cn × Cn) = n(n− 2).
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(a) Grid graphs without boundary. Entry (n,m) corresponds to Grn,m = Pn × Pm.

(b) Grid graphs with boundary. Entry (n,m) corresponds to Gr′n,m = Cn × Cm.

Figure 1: Each table shows b(G) for the grid graphs. Bottom: Grid graphs without boundary. Top:
Grid graphs with boundary. We conjecture that the bounds in 4.4.11 are tight for the grid graph
without boundary when n = m (see the main diagonal on the top). We also conjecture that the
bounds in 4.4.11 are tight for the grid graph with boundary when n = m and both are even (see
the main diagonal on the bottom). The counts were computed by finding the Smith Normal Form
of each graph Laplacian matrix, using Mathematica and Python.
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Finally, we turn to the trivial counts for expander graphs. Recall that in 2.3, we presented two
families of expander graphs. The chordal cycle graphs are 3-regular and have a prime number of
vertices, while the the Margulis, Gabber Galil graphs (denoted MGG graphs) are 8-regular and
have n ·m vertices for positive integers n,m.

Both graphs exhibit a rapid, exponential growth in the value of their largest Smith invariant
factor - see Figure 2. Recall that the product of the factors gives the tree number of the graph,
so we would expect the product of the Smith Factors to grow rapidly with the number of vertices.
However, this does not explain the fact that a single Smith factor makes so large a contribution to
the order of the sandpile group.

A possible explanation comes from a recent work on the sandpile groups of Erdos-Renyi graphs
[Woo17]. It shows that is much more likely for the Sylow p-subgroups of G(n, p) to be cyclic than
a product of smaller cyclic subgroups. For example, if 7 divides the order of the group, it is much
more likely that Z/49Z occurs in the invariant factor decomposition than Z/7Z×Z/7Z. Given that
expanders are known to look like random graphs, this route is worth exploring.

Conjecture 2: Let MGGn be the Margulis, Gabber, Galil graph on n vertices, and CCp be
the chordal cycle graph on p vertices. If v(G) denotes the value of the largest Smith invariant factor
of S(G), then as n→∞,

v(MGGn) = O(2n) and v(CCp) = O(2p)

Finally, a complementary set of results concern the fraction of Smith factors equal to 1. If G is
a graph on n vertices, this is just b(G)

n−1 . We call this the trivial ratio.

Definition 4.4.12. Let G be a graph on n vertices. The trivial ratio of G is the fraction of its
Smith invariant factors equal to 1, denoted by r(G). So

r(G) =
b(G)

n− 1

If we are interested in asymptotic behavior of b(G) as n → ∞, then the trivial ratio is a more
appropriate measure. In particular, we might ask whether the trivial ratio approaches 1 as n→∞.
For certain families of graphs it seems this is the case, including the chordal cycle graphs - but
not, interestingly, the MGG graphs - see Figure 3. Thus we suspect that the trivial ratio does not
depend on expansion, since some expanders have trivial ratio approaching 1, while others do not.

Conjecture 3: Let MGGn be the Margulis, Gabber, Galil graph on n vertices, and CCp be
the chordal cycle graph on p vertices. As n, p→∞

(n− 1)− r(MGGn) = O(n)

(p− 1)− r(CCp) = O(1)
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(a) MGG (Margulis, Gabber, Galil) graphs.

(b) The chordal cycle graphs.

Figure 2: Growth of the 5 largest Smith factors, as well as the second Laplacian eigenvalue, for
two different expander families. The x-axis corresponds to the number of vertices for some member
of the graph family, and the y-axis gives the value of the smith factor or eigenvalue, log-scaled.
Notice that for both families, the largest Smith factor shows a rapid, exponential growth. For the
MGG graphs (top), the second-largest smith factor seems to also grow quite rapidly, while the
others seem stabilize in the limit. For the chordal cycle graphs (bottom), all but the largest Smith
factor seem to stabilize in the limit. We include the second Laplacian eigenvalue as a proxy for the
Cheeger constant of both graphs. Notice that λ2 always stabilizes, showing that there cannot be
a correlation between the Cheeger constant and the value of the largest Smith factor. The Smith
invariant factor values were computed by finding the Smith Normal Form of each graph Laplacian
matrix, using Mathematica and Python. Eigenvalues were computed in NumPy.
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(a) MGG (Margulis, Gabber, Galil) graphs.

(b) The chordal cycle graphs.

Figure 3: The growth of r(G) as number of vertices grows, for two different expander families. We
conjecture r(G) approaches 1 for the chordal cycle graphs (bottom) but not for the MGG graphs
(top). The Smith invariant factor values were computed by finding the Smith Normal Form of each
graph Laplacian matrix, using Mathematica and Python.
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